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SIMULATION-BASED SAILBOAT
TRAJECTORY OPTIMIZATION
USING ON-BOARD
HETEROGENEOUS COMPUTERS

Abstract A dynamic programming-based algorithm adapted to on-board heterogene-
ous computers for simulation-based trajectory optimization was studied in
the context of high-performance sailing. The algorithm can efficiently utilize
all OpenCL-capable devices, starting the computation (if necessary, in single-
precision) on a GPU and finalizing it (if necessary, in double-precision) with
the use of a CPU. The serial and parallel versions of the algorithm are presen-
ted in detail. Possible extensions of the basic algorithm are also described. The
experimental results show that contemporary heterogeneous on-board/mobile
computers can be treated as micro HPC platforms. They offer high performance
(the OpenCL-capable GPU was found to accelerate the optimization routine 41
fold) while remaining energy and cost efficient. The simulation-based approach
has the potential to give very accurate results, as the mathematical model upon
which the simulator is based may be as complex as required. The black-box re-
presented performance measure and the use of OpenCL make the presented
approach applicable to many trajectory optimization problems.
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1. Introduction

Trajectory optimization is a classic problem in many engineering disciplines, such as
robotics, aerospace engineering, or optimal control. In most cases, however, it can-
not be solved analytically. A typical situation is when the explicit formula of the
performance measure is unknown (i.e., it is black-boxed) to the optimization routine
and its values are obtained from computer simulation. Since the cost (time comple-
xity) of a single simulation is often significant, simulation-based optimization tasks
are usually solved using HPC-clusters (or cloud computing platforms). However, in
many on-board (or embedded) systems like the trajectory planners of sailboats (or
autonomous robots), this approach cannot be applied. What is often used instead are
(over-)simplified mathematical models that can only give very rough approximations
of optimal trajectories. This can be unacceptable in many situations; for instance,
in high-performance sailing (like the America’s Cup) or when sailing in bad and/or
fast-changing weather conditions.

The main aim of this paper is to present an approach that allows us to obtain
accurate results of trajectory planning using only on-board/mobile computers. The
main contributions of this paper are:

• an effective algorithm (adapted to on-board heterogeneous computer systems) for
simulation-based sailboat trajectory optimization (simulation-based optimization
can be very accurate, because the mathematical model that the simulator is based
on may be as complex as required),
• experimental results that prove that contemporary heterogeneous on-board (or

mobile) computers can be treated as micro HPC platforms, as they offer high
performance while remaining energy and cost efficient (which is often crucial in
many on-board and/or embedded systems).

The target platform is assumed to be heterogeneous; i.e., composed of multiple pro-
cessor types1, and that the algorithm is implemented in OpenCL (Open Computing
Language), which is defined by an open standard and is cross-platform (unlike CUDA
[Compute Unified Device Architecture]). OpenCL implementations are now availa-
ble for widely used CPUs and GPUs. The OpenCL standard also defines the OpenCL
Embedded Profile – a special version of the platform for embedded systems and mobile
devices. The proposed approach (i.e., the use of OpenCL and black-box representa-
tion of performance measure) is quite general, both from the deployment point of
view (mobile/on-board devices, modern embedded systems, but also HPC-clusters),
and because of the scope of the optimization problems it covers.

The remainder of this paper is organized as follows. The next section conta-
ins a review of related work. Following that, the optimization problem is defined
(including a description of the simulation model). Next, the proposed algorithm is
described, and some remarks about augmenting the algorithm are also given. After

1CPU and GPU, but also possibly of FPGA and/or DSP.
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that, the experimental results are presented and discussed. The last section contains
the conclusion of the study.

2. Related work

The brachistochrone problem2, formulated by Johan Bernoulli in 1696, is often con-
sidered the first scientific formulation of the problem of trajectory optimization. One
of its first solutions (published by Johan’s brother Jakob) significantly contributed
to the development of the calculus of variations (see, for instance, [32]) – the field of
mathematics which has played a crucial role in trajectory optimization over the last
three hundred years.

The real breakthrough in this field came in the 1950s with the development
of the digital computer and introduction of dynamic programming ([2]), effective
shortest path algorithms ([3, 13]), and the Pontryagin Maximum Principle ([26]).
All of these, together with non-linear programming (NLP), have become the bases for
many effective trajectory optimization methods that are commonly classified as either
direct or indirect (see, for instance, [4, 19, 33, 37]). The indirect methods, based on
the calculus of variations, aim for solutions that satisfy the necessary conditions of
optimality. By contrast, the direct ones search for solutions having the best value of
performance measure. Trajectory optimization methods based on the shortest path
algorithms (see, for instance, [7, 14, 29]) can be considered as a special case of this
second approach.

A special group of trajectory optimization problems comprises those having black-
box represented performance measures. A typical example of this situation is when
the performance measure values are received from computer simulation. In this case,
most classic optimization methods cannot be used (at least not directly), and the
optimization process is often based on soft-computing methods (see, for instance,
[6, 27, 28, 36, 38]).

Many existing trajectory optimization case studies are related to aerospace engi-
neering (see, for instance, [6, 29]), but there are also others (see, for instance, [10, 15]),
and a number of these are related to (autonomous) sailboat trajectory planing (see,
for instance, [8, 23–25, 31]).

Another important research area in the context of this paper is related to the pa-
rallelization of trajectory optimization algorithms (see, for instance, [7, 18]) including
the possibility of their GPU-acceleration (see, for instance, [1, 17, 22, 30, 39]).

3. Problem formulation

The trajectory optimization task is to find among all admissible trajectories the one
with the best value of the performance measure. The performance measure can be

2Discussed in a broad sense by [34, 35].
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formulated this way:

J = h
(
xxx(tf ), tf

)
+
∫ tf

t0

g
(
xxx(t), uuu(t), t

)
dt (1)

where: t0 and tf are the initial and final times, h and g are scalar functions, and xxx =
(x1, x2, . . . , xn) is the input vector representing a trajectory (encoded in some way).
Sometimes, for instance when the values of the performance measure are taken from
a computer simulation, the explicit formula of the performance measure3 is unknown;
i.e., it is “opaque” (or black-boxed) to the optimization routine, and therefore indirect
methods cannot be applied (at least directly). In such cases, special direct-method
based algorithms are usually used.

The sailboat trajectory optimization problem analyzed in this paper (see Fig. 1)
is an example of a two-dimensional, continuous trajectory optimization task having
a black-box represented performance measure. Simulation-based optimization means
that the sailboat model (simulator) can be as complex as required.

Figure 1. A sailboat trajectory optimization: an admissible trajectory of a sailboat sailing
upwind from point A to point B via points P1 and P2 (it is impossible to sail directly

upwind).

The details of the sailboat trajectory evaluator (simulator) used in this paper are
described in Appendix A.

4. Proposed algorithm

The approach presented in this section is based on the following main two steps:
1. transformation (using a grid-based discretization scheme) of the continuous opti-

mization problem into a search problem over a specially constructed finite graph4,

3Id est, the objective function (functional).
4Note that the problem (and, as a result, the corresponding grid) can be also formulated in

a polar coordinate system.

28 listopada 2016 str. 4/21

464 Roman Dębski



2. application of dynamic programming to find the approximation of the minimum-
time sailing line5.

The discretization process can be repeated several times6. The next stage mesh (grid)
can be generated through mesh refinement, making use of the best trajectory found
thus far.

A

B

A

B

True wind vector field

...

H

L

Figure 2. Grid-based discretization scheme transforming the continuous optimization pro-
blem into a search problem. The grid nodes are grouped in rows – the grid shown in the
figure has thirty two nodes in a row. The discretization process can be repeated several times
(a form of iterative improvement algorithm through successive mesh refinements). Note: the

circle on the left is the magnification of one part of the grid.

The grid is based on equidistant nodes (see Fig. 2), and the graph it represents
is directed, acyclic, and “topologically sorted” (the nodes in row r are followed by the
nodes in row r+ 1). The above features allow the search process to be more effective
than in the standard Dijkstra Shortest Path algorithm. It is worth noting here that, at
the beginning of this simulation-based optimization process, there is no cost matrix –
the cost of each edge (i.e., linear segment of the trajectory) can be calculated (through
simulation) only when the corresponding initial velocity is known; this value depends
on the results received from the simulation for preceding segments. This dependence
is a sequential component of the optimization algorithm.

We assume that nodes from any two subsequent rows (layers) are fully connec-
ted (i.e., each node in row r is connected to all nodes from rows r − 1 and r + 1).
Because of the way the boundary conditions are formulated (see Eqn.13 and Fig. 10),
C simulations have to be performed to evaluate a single linear segment. This number

5Represented as a piecewise-linear function (see Fig. 2).
6This can be considered as a form of the iterative improvement algorithm.
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can usually be reduced if we make use of some features of the model (as discussed in
the final paragraph of this section).

r +1s

rs

r -1s

k=0...C-1

i=0...C-1

j=0...C-1

r=0...R-1

segment s
ce

r +1s

rs

r -1s

cs

Figure 3. Dependence of the segments in the mesh (grid): segment s(rs, cs, ce) depends on all
segments s(k)(rs−1, k, cs). Arrows with ranges r = 0, . . . R−1; i = 0, . . . C−1; j = 0, . . . C−1;
k = 0, . . . C − 1 describe the loops of the algorithm pseudo-codes presented in this section

(see also [10]).

The pseudo-code of simulation for the segments in the first row (note that they
do not have any predecessors) is shown as Algorithm 1 [10].

Algorithm 1. sim0 – perform simulation for a segment in mesh row 0.
Require: cs, ce
1: {@param cs - the segment start node column index}
2: {@param ce - the segment end node column index}
3: (l(s), β(s)

t ) := get segm stat data(0, cs, ce)
4: (t(s)1 , v

(s)
1 ) := simulation for(l(s), β(s)

t , 0, 0)
5: {set t(s)1 and v

(s)
1 as s’s optimal values}

6: update segment(0, cs, ce, t
(s)
1 , v

(s)
1 , NULL)

In the first step, we calculate segment length l(s) and corresponding (local) true
wind angle β(s)

t . Next, the values for time t(s)1 and speed v
(s)
1 are received through

simulation. And finally, these values are stored, as they will be needed in simulations
for segments from the next layer (see Eqn.13 and Fig. 10).

Algorithm 2 shows the main steps of the simulation for the segments in rows
1..R− 2.

To find the shortest time of travel to the end point of a segment (for instance,
point (rs + 1, ce) in Fig. 3), it is necessary to perform C simulations because of
the way the boundary conditions for each segment are formulated (see Eqn.13 and
Fig. 10), updating (if necessary) the best solution found thus far (compare [13]).
Variable pidxopt stores the index of the segment from row rs − 1, which corresponds
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to the locally optimal section of the trajectory7. Note: sim0 and sim1R presented as
Algorithms 1 and 2 are implemented as OpenCL kernels.

Algorithm 2. sim1R – perform simulation for a segment in mesh rows [1..R− 1).
Require: rs, cs, ce
1: {@param rs - the segment start node row index}
2: {@param cs - the segment start node column index}
3: {@param ce - the segment end node column index}
4: topt := TMAX

5: (l(s), β(s)
t ) := get segm stat data(rs, cs, ce)

6: {For all mesh nodes in the (rs − 1)-th row}
7: for all k in [0..C) do
8: {Initialize t(s)0 , v

(s)
0 with the corresponding final values for segment (rs − 1, k, cs)}

9: (t(s)0 , v
(s)
0i ) := get segm dyn data(rs − 1, k, cs)

10: {If necessary, correct v0, see Eqn.13}
11: v

(s)
0 = correct v0(rs − 1, k, cs, ce, v

(s)
0i )

12: (t(s)1 , v
(s)
1 ) := simulation for(l(s), β(s)

t , t
(s)
0 , v

(s)
0 )

13: {If necessary, update the best values so far}
14: if (t(s)0 + t

(s)
1 < topt) then

15: topt := t
(s)
0 + t

(s)
1

16: vopt := v
(s)
1

17: pidxopt := k

18: end if
19: end for
20: {Update the segment data}
21: update segment(rs, cs, ce, topt, vopt, pidxopt)

Algorithm 3 is the serial version of the trajectory optimization procedure (see loop
control variables with Fig. 3). The algorithm time complexity is equal to Θ

(
RC3tsim

)
,

where R and C are the numbers of rows and columns (in the mesh/grid), respectively,
and tsim is the time of a single simulation.

The current implementation of the algorithm needs Θ
(
RC2

)
memory but can

be reduced8 to Θ
(
max(RC,C2)

)
.

We can parallelize Algorithm 3, making use of the fact that the graph representing
the grid is “topologically sorted”, and so the simulations for all segments in the same
row are independent of each other. The simulations can be performed in parallel on
any (or all) of the OpenCL-capable devices with which the on-board computer system
is equipped. This idea is shown in Figure 4 and Algorithm 4.

sim0 kernel and sim1R kernel are intended to be OpenCL kernels; i.e., pieces
of code prepared for parallel execution on OpenCL-capable devices.

7Id est, the one with the shortest time of travel to the segment end point; indexes pidxopt are
used in the final part of the algorithm to find the optimal solution.

8The complexity can be additionally reduced, for instance, by reduction of the graph node order.
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Algorithm 3. Serial trajectory optimization.
1: {For all mesh nodes in row 0; note: Aidx is the index of point A}
2: for all j in [0..C) do
3: sim0(Aidx, j)
4: end for
5: {For rows 1..R-3 in the mesh}
6: for all r in [1..R-2) do
7: {For all mesh nodes in row r }
8: for all i in [0..C) do
9: {For all mesh nodes in the (r + 1)-th row}

10: for all j in [0..C) do
11: sim1R(r, i, j)
12: end for
13: end for
14: end for
15: {For all mesh nodes in row R− 2; note: Bidx is the index of point B}
16: for all i in [0..C) do
17: sim1R(R− 2, i, Bidx)
18: end for
19: {opt trajectory is calculated using back-pointers (pidxopt)}
20: return opt trajectory, fin time, fin velocity

“simulation

wave” flow

synchronization barrier

parallel simulation r -1s

synchronization barrier

parallel simulation rs

synchronization barrier

parallel simulation r +1s

.
.
.

.
.
.

r +1srow

rsrow

r -1srow

r +2srow

Figure 4. Parallel simulation for all segments in the same mesh row. The synchronization
barrier is needed because of the dependence between nodes from the subsequent rows (see

Eq.13 and also [10]).

The parallel algorithm time complexity is equal to Θ
(
RCtsim max

(
C2/pe, 1

))
,

where pe is the number of processing elements (CUDA cores). Annotation
@PARALLEL(f(.)) expresses (in pseudo-code, only as there is no such annotation
in OpenCL) that function f can be executed in parallel for different pieces of data
referenced by pointer – datap.
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Algorithm 4. Parallel trajectory optimization.
1: {For all segments starting at point A and ending at row 1}
2: @PARALLEL (sim0 kernel(datap))
3: for all r in [1..R-2) do
4: @PARALLEL (sim1R kernel(r, datap))
5: end for
6: {For all segments starting at row R-2 and ending at point B}
7: @PARALLEL (sim1R kernel(R− 2, datap))
8: return opt trajectory, fin time, fin velocity {as before, using back-pointers

(pidxopt)}

In some on-board (embedded) computer systems, the described version of the
optimization procedure has to be changed to meet certain constraints (for instance,
regarding time and/or memory complexity). One way of addressing this issue (apart
from successive mesh refinements, already proposed in the basic algorithm) is reducing
the number of connections between grid nodes (see Fig. 5). This decreases both time
and memory complexity (fewer segments means fewer simulations to perform and less
memory to store segment data). However, the effectivenesses of this approach is very
problem-dependent – in many cases, we cannot reduce the search space in this way
without risking the loss of good solution candidates.

r +1
s

r
s

r -1
s

Figure 5. Reduction of the number of connections between nodes (i.e., the degree of the
graph nodes).

It is worth noting here that the presented algorithm can be augmented by a local
search/optimization (the basic algorithm is a global search in a discrete space). In
some cases, this can significantly improve the final result. This is because the search
space of the local algorithm can be continuous, which means that there is no accuracy
limit related to mesh granularity. One of the key aspects of the successful application
of local optimization is choosing a basis appropriate for the problem in the search
space (see [9]).
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5. Experimental results

To demonstrate the effectiveness of the algorithms presented in Section 4, a series of
experiments was carried out to find the optimal sailing line for two different locations
of target point B relative to the true wind direction (which, without loss of generality,
was assumed constant – see angle β0 = π/36 in Fig. 8). The true wind speed |v̄t| was
the same in all experiments and set to 12 m/s. The constants of the model (see Eq.11)
were as follows: c1 = 0.03, c2 = 0.005, k = 0.7. The size of the “simulation rectangle”
H ×L was 800 m× 500 m (see Fig. 2). In all experiments, a MacBook Pro was used9

with OS X 10.9.3 and OpenCL 1.2, having two OpenCL-capable devices:

• processor Intel Core i7-3740QM @ 2.7 GHz,
• graphic card nVidia GeForce GT 650m10.

5.1. Performance analysis: the impact of compiler optimizations

Modern compilers have optimization abilities that can significantly improve program
performance. Some of them, including Clang/LLVM 5.111, try to provide optimiza-
tions for programs at every possible optimization stage (i.e., compile time, link time,
and runtime). Available optimization options usually let the programmer choose whe-
ther they prefer a smaller target file size, faster code, or faster build times. In the case
of on-board computer systems (or embedded systems), the combination of the first
two (i.e., fast and small) is usually the preferred option.

This paragraph contains a brief analysis of the impact of the compiler optimiza-
tions on sequential program execution time. The results are summarized in Table 1.

Table 1
Average execution times m (in seconds) and standard deviations s, from 11 runs, for different
optimization levels set in Apple LLVM 5.1 compiler (sequential algorithm run on the CPU;
the model with β0 = π/36, C = 128, where C – the number of nodes in one row of the grid).

−O0 −O1 −O2 −O3 −Ofast −Os
m 1284.23 873.22 857.88 857.35 815.34 874.43
s 1.665 1.140 1.265 0.780 0.812 3.358

The second column in the table (−O0 option) presents the mean value (m) and
standard deviation (s) of the execution times of the code compiled with no optimiza-
tion. The next four (−O1 to −Ofast) show the corresponding values for four levels of
optimization – from basic to the most “aggressive”. The last column −Os represents
a special level in which the compiler performs all optimizations that do not typically
increase the target file size. It can be seen that the −Ofast option allows for the

9With 16GB of DDR3L 1600 MHz RAM.
10Two compute units, each having 192 processing elements (CUDA cores), warp size 32, 1 GB of

GDDR5 memory, 48 KB of local memory, 64 KB of constant memory.
11The compiler that was used in the experiments.
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reduction of execution time by 36%, while −Os gives a 32% lower execution time.
This proves that the −Os option is the recommended one, since it is only slightly
less effective in reducing execution time (32% vs. 36%), but it achieves this without
increasing the target file size (−Os: 206 kB vs. −Ofast: 210 kB).

5.2. OpenCL platforms comparison: CPU vs. GPU performance

According to the OpenCL execution model (see, for instance, [16]), a CPU host defi-
nes an N-dimensional computation domain over some region of an OpenCL device’s
DRAM memory. Each index of this N-dimensional domain at runtime corresponds to
a work-item (which executes the same OpenCL kernel).

In the experiments performed, a two-dimensional domain was assumed, with each
work-item mapped to one segment simulation. As there were C nodes in one row (see
Fig. 3) and each node in a row was connected to all nodes in the subsequent row, the
total number of connections (i.e., linear segments), which is equal to the total number
of work-items, was

#WI = C × C = C2 (2)

The results for β0 = π/36 are summarized by Table 2 and Figure 6.

Table 2
Average execution times m (in seconds) and standard deviations s, from 11 runs, for different
numbers of mesh nodes in a row (the model with β0 = π/36). The last column (tf ) contains

the final results (in seconds).

C #WI
ts tocl−CPU tocl−GPU tf

m s m s m s

8 64 0.21 0.002 0.05 0.001 0.24 0.002 1212.32
16 256 1.74 0.005 0.30 0.022 0.54 0.004 655.36
32 1024 13.76 0.060 1.97 0.022 1.08 0.012 411.25
64 4096 107.47 0.290 14.82 0.031 3.92 0.017 357.85

128 16384 874.43 3.358 128.63 0.466 21.33 0.120 352.17

In Table 2, the subsequent columns represent: C – the number of mesh nodes in
one row; #WI – the corresponding number of work-items; ts – the execution time
of the serial version of the optimization algorithm (see Algorithm 3); tocl−CPU and
tocl−GPU are the execution times of (parallel) Algorithm 4 run on the CPU and the
GPU, respectively; and finally, for reference, tf – the final result of the optimization.

Three facts are worth noting with regard to the parallel algorithm performance
(see Fig. 6):

• On the GPU, there is a strong dependence of the speedup ratio12 on the mesh-
size), whereas on the CPU, this dependence is much weaker (almost negligible).

12Calculated in a classic way (i.e., as speedup = ts/tp).
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This is a typical feature of computations performed on a GPU – the more work-
items (which can be seen as threads) the GPU has to handle, the better the
speedup ratio is.
• The overhead related to data transfers between the host and GPU can be some-

times so high that using the GPU as a general-purpose computing device has no
benefit – for C ¬ 8 (which corresponds to #WI ¬ 64), the execution times on
the GPU were higher than the corresponding ones of the sequential algorithm!
• For a smaller number of work-items (in this example, it was for C ¬ 16, which

corresponds to #WI ¬ 256), using the CPU as the OpenCL (computing) device
was more effective than using the GPU.

Figure 6. Speedups for the sailboat model with β0 = π/36. Note: the values were calculated
taking ts = ts−Os (see Table 1).

Based on the above observations, one can see an important advantage of using
OpenCL for programming heterogeneous computer systems – because the code is
exactly the same for all OpenCL-capable devices, any13 of the available OpenCL
devices can be used with no additional programming cost, and the selection of the
computing device can be done even at run-time.

The corresponding results for β0 = π/6 are summarized by Table 3 and Figure 7.
This parameter of the model was selected to demonstrate worse (than before) results
of utilizing the GPU as a general-purpose computing device.

Figure 7 presents the parallel algorithm performance from the speedup point of
view.

13Sometimes more than one OpenCL-capable device can be used at the same time.
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Table 3
Average execution times m (in seconds) and standard deviations s, from 11 runs, for different
numbers of mesh nodes in a row (the model with β0 = π/6). The last column (tf ) contains

the final results (in seconds).

C #WI
ts tocl−CPU tocl−GPU tf

m s m s m s

8 64 0.22 0.001 0.06 0.002 0.33 0.002 331.35
16 256 1.79 0.007 0.33 0.011 0.64 0.004 331.35
32 1024 14.18 0.128 2.07 0.022 1.20 0.006 331.35
64 4096 108.02 0.171 15.27 0.181 4.16 0.028 331.35

128 16384 879.77 8.701 129.88 0.295 27.35 0.190 314.65

Figure 7. Speedups for the sailboat model with β0 = π/6. Note: the values were calculated
taking ts = ts−Os (see Table 1).

The observations made previously (i.e., for the model with β0 = π/36) are still
valid, but the speedups related to the GPU were worse than before (especially for
C = 128). For eight mesh-nodes in a row (which corresponds to 64 work-items, com-
pare Eq.2), the GPU-accelerated computation again took more time than the serial
algorithm. For 32 nodes, the speedup for the GPU was about 74% better that the
corresponding one for the CPU; and finally, the biggest speedup ratio, observed as
before for C = 128, was equal to 32.2. This worse performance was a result of an
unbalanced (among work-items) computational load (the computation for a single
mesh row was as long as the longest simulation of its single segment)

Finally, it is worth adding that, in the experiments performed, the OpenCL “auto
mode” was used, which means that the number of work-items in one work-group was
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managed by the OpenCL platform itself (see, for instance, [16]). This mode proved
effective in similar computational tasks (see, for instance, [9]).

5.3. Optimization results analysis

As an example of the optimization results, the trajectories corresponding to each of
the two steps of the iterative improvement algorithm (successive mesh refinements),
run for β0 = π/36, are presented in Figure 8.

B

A

ß0

B

ß
0

A

Figure 8. Optimization results for the model with β0 = π/36: the final (second) step
of the successive mesh refinement algorithm with C = 64. The corresponding result was

tf = 352.17 s.

In both steps, the number of grid nodes in one row (C) was set to 64. This
corresponded in the first step to a row inter-node distance equal to approximately
12.7 m, whereas in the second step to 6.3 m.

During the experiments, C = 64, set for the initial step of the iterative improve-
ment algorithm, was the minimum number of mesh nodes in one row that gave a good
first approximation of the final solution. In the analyzed case (i.e., for β0 = π/36), the
second iteration (step) improved the final result only by about 1.6%, which was eno-
ugh to stop the computation. In general, the stopping criterion is a trade-off between
the required accuracy of the final result and the maximum (acceptable) computation
duration.

The performance analysis presented in Section 5.2 and the above findings sug-
gest that the iterative improvement algorithm (adapted to heterogeneous computing
platforms) can start on the GPU, with the initial mesh size C set to 64 (or even
128) and, if necessary, perform the computation in single-precision. After a couple
of iterations (mesh refinements), the search space size can be reduced; so when, for
instance C = 16, the computation may be “switched” to the CPU14.

14If necessary, performing the computation in double-precision.

28 listopada 2016 str. 14/21

474 Roman Dębski



Note: as an extension of this algorithm, an additional step may be added, in
which the best solution found so far is “refined” by local optimization in continuous
space.

6. Conclusion

An effective algorithm, adapted to on-board/mobile heterogeneous15 computer sys-
tems, for simulation-based trajectory optimization has been studied using an example
taken from high-performance sailing. The serial and parallel versions of the optimiza-
tion algorithm have been presented in detail. Possible extensions of the basic algorithm
have also been described. The presented iterative improvement algorithm can utilize
all OpenCL-capable devices in an efficient way starting the computation (if necessa-
ry, in single-precision) on a GPU and finalizing it (if necessary, in double-precision)
with the use of a CPU. As an additional step, the best trajectory found by the base
algorithm can be refined by local optimization in continuous space.

The experimental results have shown that contemporary heterogeneous on-board
(or mobile) computers can be treated as micro HPC platforms – they offer high per-
formance (the effective use of the OpenCL-capable GPU accelerated the optimization
routine up to 41 fold) while remaining energy and cost efficient (which is often crucial
in many on-board and/or embedded systems). Therefore, they can be effectively used
for solving simulation-based trajectory optimization problems.

The proposed approach (i.e., the use of OpenCL and black-box representation
of performance measure) is very general from both the potential deployment point of
view (mobile/on-board devices, modern embedded systems, but also HPC-clusters)
and because of the scope of the optimization problems it covers. The simulation-
based approach can be much more accurate because the mathematical model that
the simulator is based on may be as complex as required (in contrast to the often-
used “boat polar-based” approach, which gives only theoretical maximum boat speeds
at various true winds.

Future research work could concentrate on:

• experimenting with the proposed extensions of the basic (parallel) algorithm,
• implementing a more-accurate sailboat model,
• experimenting with different ways of representing the trajectory,
• refining the iterative improvement algorithm itself (including the optimal resource

usage, load balancing, and mesh-generation algorithms),
• verifying the presented algorithms in different trajectory optimization problems,
• verifying the presented algorithms in a distributed computing environment (inc-

luding the augmented cloud16).

15Id est, composed of multiple processor types.
16See, for instance [5, 11, 12].
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A. Simulation-based trajectory evaluator
(the black-box simulator)

Consider a sailboat of mass m sailing upwind in direction s in true wind velocity (vt)
vector field as shown in Figures 1 and 9. We assume that the aerodynamic side force
Sa generated by the wind pressure on the sails is matched instantaneously by Sh (the
hydrodynamic side force), while the thrust T in general differs from the resistance R
(compare, for instance, [24]).

The trajectory is approximated by a piecewise-linear function. This simplifies the
problem significantly – instead of one (complex) two-dimensional problem, we have
a series of (simple) one-dimensional ones [10]. Each of the sub-problems is related to
one segment only.

vt

va

vs

ßa

ßt

S

T

L

D

Fa

s
ßa

ßt

s

m

S
h

a

R

(a) velocities (b) forces

Figure 9. A sailboat (sailing upwind) model: βt – true wind angle, βa – apparent wind angle,
s – (current) sailing direction, vt – true wind velocity, va – apparent wind velocity, vs –
current sailboat velocity, Fa – aerodynamic force, L – lift (the aerodynamic force component
perpendicular to the wind direction), D – drag (the aerodynamic force component in the
direction of the wind), T – thrust, Sa – side force, Sh – the hydrodynamic side force, R –

total (i.e., hydrodynamic plus aerodynamic) resistance.
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Equation of motion. After applying Newton’s second law for direction s, we receive17

mv̇s = ms̈ = T −R (3)

where
T = f(βa, va) = (C1βa − C2)v2

a = (mc1βa −mc2)v2
a (4)

is thrust18,
R = k1ṡ

2 = mkṡ2 (5)

is the total (i.e. hydrodynamic plus aerodynamic) resistance, and

va =
√

(ṡ sinβt)
2 + (vt + ṡ cosβt)2 (6)

βa = βt − arccos


 vt + ṡ cosβt√

(ṡ sinβt)
2 + (vt + ṡ cosβt)2


 (7)

are the apparent wind velocity and angle, respectively.
After dividing both sides of Eq.(3) by m and making use of Eqs.(4) and (5), for

the i-th (linear) segment of the trajectory, we get

s̈(i) + k
(
ṡ(i)
)2

=
(
c1β

(i)
a − c2

)(
v(i)
a

)2
(8)

If we introduce

xxx(i) =
(
x

(i)
1 , x

(i)
2

)>
=
(
s(i), ṡ(i)

)>
(9)

as the vector of the system state variables at time t, and

uuu(i) =
(
u

(i)
1

)
=
(
β

(i)
t

)
(10)

as the vector of the system control inputs at time t, then the system can be described
by the following two first-order differential equations:

ẋxx(i) (t) = aaa(i)
(
xxx(i) (t) , uuu(i) (t)

)
, (11)

where

aaa(i) =


 x

(i)
2(

c1β
(i)
a − c2

)(
v
(i)
a

)2
− k(x(i)

2 )2


 . (12)

17Single-dotted and double-dotted values represent the first and second derivatives with respect
to time.

18Approximated making use of experimental data taken from [20].
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Boundary conditions. The first segment of the trajectory starts at point A and the
last ends at B (see Fig. 1). The boundary conditions have to be written for each
segment s of the (piecewise-linear approximated) trajectory taking into account angle
δ representing the local value of the trajectory curvature as shown in Figure 10 (see
also [10]).

P

A
segment s-1

v1
(s-1)

r +1s

rs

r -1s

segment s v0
(s)

δ= PAB

B

Figure 10. Angle δ representing the local value of the trajectory curvature.

The initial speed |v(s)
0 | (i.e., the length of the velocity vector) for segment s is calcu-

lated in the following way:19

|v(s)
0 | =





|v(s−1)
1 | if cosδ  Um,
|v(s−1)

1 |cos4δ if Lm < cosδ < Um,

0 otherwise.
(13)

where |v(s−1)
1 | is the final speed for segment (s − 1), Um represents an arbitrarily

chosen upper margin (assumed in experiments to be 0.98) and Lm stands for the
corresponding lower margin (assumed in experiments to be 0.5). For the segment
starting at point A, we assume that |v(1)

0 | = 0.

Performance measure. The analyzed optimization task is an example of a minimum-
time problem – the optimal trajectory is the one for which the corresponding value
of tf (i.e., the time to reach point B) is minimal. For such problems (see Eq.1)

h
(
xxx(tf ), tf

)
= 0, g

(
xxx(t), uuu(t), t

)
= 1, (14)

so assuming that t0 = 0 and taking into account the segmentation of the trajectory,
we can rewrite the performance measure formula (Eq.1) as follows:

J = tf =
∑

s

t
(s)
f , (15)

which means that, in order to find the time of motion from point A to point B, a series
of simulations (one for each segment – s) have to be performed.

19To improve the accuracy of the model one should consider other approaches, see for instance
[21] or [24].
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