PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przegląd rodzajów chiralnych faz stacjonarnych oraz możliwości ich zastosowań w chromatografii cieczowej

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Types of chiral stationary phases and its applications to liquid chromatography (LC) : a mini review
Języki publikacji
PL
Abstrakty
PL
Chromatograficzne rozdzielanie związków optycznie czynnych ma ogromne znaczenie nie tylko w przemyśle farmaceutycznym, ale i agrochemicznym, a także w badaniach naukowych różnego rodzaju. W niniejszym opracowaniu scharakteryzowano komercyjnie dostępne chiralne fazy stacjonarne na bazie, cyklodekstryn, polisacharydów, makrocyklicznych antybiotyków, eterów koronowych, a także fazy proteinowe, ligandowymienne, jonowymienne oraz fazy typu Pirkle’a. Omówiono podstawowe właściwości fizyczne i chemiczne w/w faz stacjonarnych, przedstawiono przykładowe ich struktury, mechanizmy chiralnego rozpoznania oraz podstawowe zastosowania. Opisano również warunki chromatograficznego rozdzielania chiralnego dla wybranych farmaceutyków i pestycydów.
EN
Importance of chromatographic enantioseparations in the pharmaceutical and agrochemical industries is still increasing. In this paper the chiral stationary phases, including cyclodextrins, polysaccharides, macrocyclic antibiotics, crown ethers, proteins, ligand-exchange, Pirkle-type and ion exchange phases is discussed. For all types of chiral stationary phases, the basic physical and chemical properties are discussed, as well as the structure and the possible chiral recognition mechanisms. The basic applications of this phases are also described. Chromatographic conditions for chiral separation of selected active pharmaceutical ingredients and pesticides are reviewed.
Czasopismo
Rocznik
Strony
99--128
Opis fizyczny
Bibliogr. 82 poz., rys., tab.
Twórcy
  • Katedra Chemii Organicznej, Wydział Chemiczny, Politechnika Gdańska
autor
  • Katedra Inżynierii Chemicznej i Procesowej, Wydział Chemiczny, Politechnika Gdańska
  • Katedra Inżynierii Chemicznej i Procesowej, Wydział Chemiczny, Politechnika Gdańska
autor
  • Katedra Inżynierii Chemicznej i Procesowej, Wydział Chemiczny, Politechnika Gdańska
autor
  • Katedra Inżynierii Chemicznej i Procesowej, Wydział Chemiczny, Politechnika Gdańska
Bibliografia
  • 1. L.A. Nguyen, H. Hua, P.Y. Chuong: Chiral drugs: an overview; International Journal of Biomedical Science, (2006) 85.
  • 2. M. Balcerkiewicz, M. Domżalska: Porównanie toksyczności i skuteczności terapeutycznej bupi-, lewobupi-i ropiwakainy; Farmacja Polska, 66 (2010) 106.
  • 3. J.M. Walshe: Chirality of penicillamine; The Lancet, 339 (1992) 254.
  • 4. R. Sanchez-Ponce, L.Q. Wang, W. Lu, J. Hehn, M. Cherubini, R. Rush: Metabolic and pharmacokinetic differentiation of STX209 and racemic baclofen in humans; Metabolites, 2 (2012) 596.
  • 5. www.fda.gov/cder/guidance/stereo.html (data dostępu: 10.01.2015).
  • 6. D. T. Witte: High performance liquid chromatography for direct and indirect enantiomeric separations of chiral drugs; Praca magisterska; Uniwersytet w Groningen (1992).
  • 7. A.J. Hutt, J. Valentová: The chiral switch: The development of single enantiomer drugs from racemates; Acta Facultatis Pharmaceuticae Universitatis Comenianae, Tomus L (2003) 7.
  • 8. N. M. Maier, P. Franco, W. Lindner: Separation of enantiomers: needs, challenges, perspectives ; Journal of Chromatography A, 906 (2001) 3.
  • 9. M. Paik, J.S. Kang, B.S. Huang, J.R. Carey, W. Lee: Development and application of chiral crown ethers as selectors for chiral separation in high-performance liquid chromatography and nuclear magnetic resonance spectroscopy, Journal of Chromatography A, 1274 (2013) 1.
  • 10. H. Lorenz, A. Seidel-Morgenstern: Processes To Separate Enantiomers; Angewandte Chemie International Edition, 53 (2014) 1218.
  • 11. S. Allenmark: Chromatographic Enantioseparation. Methods and Applications, 2nd ed., Ellis Horwood, (1991) Ch.3.
  • 12. A. Kwaterczak: Kompleksy supramolekularne w elektroforezie związków chiralnych – zastosowanie w analizie substancji leczniczych; Diss. Instytut Chemii Fizycznej Polskiej Akademii Nauk (2007).
  • 13. R. W. Souter, Chromatographic Separations of Stereoizomers; CRC Press (1985).
  • 14. K. Stavros: HPLC Made to measure. A practical handbook for optimization; John Wiley & Sons (2008) 427.
  • 15. W.J. Lough: Classification of LC chiral stationary phases: Wainer Types I-V revisited, Journal of Chromatography B, 968 (2014) 1.
  • 16. K. Szwed: Kompleksy potrójne w chromatografii cieczowej; Praca doktorska; Instytut Chemii Fizycznej PAN w Warszawie (2013).
  • 17. A. Biwer, G. Antranikian, E. Heinzle: Enzymatic production of cyclodextrins; Applied Microbiology and Biotechnology, 59 (2002) 609.
  • 18. C. Olsson, G. Westman: Direct Dissolution of Cellulose: Background, Means and Applications, Cellulose-FundamentalAspects; www.intechopen.com/books/cellulose-fundamental-aspects/directdissolution-of-cellulose-background-means-and-applications (data dostępu: 12.01.2014).
  • 19. M. Gorska: Wpływ czynników achiralnych na chromatograficzne rozdzielanie enancjomerów wybranych pochodnych pirolidyn-2-onu na sacharydowych fazach stacjonarnych; Instytut Chemii Fizycznej PAN (2010).
  • 20. E.M. Martin Del Valle: Cyclodextrins and their uses: a review; Process Biochemistry, 39 (2004) 1033.
  • 21. S. Immel: Computer Simulation of Chemical and Biological Properties of Saccharides: Sucrose, Fructose, Cyclodextrins, and Starch; Darmstadt University of Technology (1995).
  • 22. D.W. Armstrong, W. DeMond; Cyclodextrin Bonded Phases For the Liquid Chromatographic Separation of Optical, Geometrical, and Structural Isomers; Journal of Chromatographic Science, 22 (1984) 411.
  • 23. www.sigmaaldrich.com (data dostępu: 09.01.2015).
  • 24. J. Meierhenrich: Chiral Separations—Methods and Protocols. Series: Methods in Molecular Biology; Angewandte Chemie International Edition, 43 (2004) 6410.
  • 25. Z. Wang, J. Ouyang, W.R. Baeyens: Recent developments of enantioseparation techniques for adrenergic drugs using liquid chromatography and capillary electrophoresis: a review; Journal of Chromatography B, 862 (2008) 1.
  • 26. M. Lämmerhofer: Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases; Journal of Chromatography A, 1217(2010) 814.
  • 27. C. Xiaoming, C. Yamamoto, Y. Okamoto: Polysaccharide derivatives as useful chiral stationary phases in high-performance liquid chromatography; Pure and Applied Chemistry, 79 (2007) 1561.
  • 28. G.M. Henderson, H.G. Rule: A new method of resolving a racemic compound; Journal of the Chemical Society, (1939) 1568.
  • 29. M. Kotake, T. Sakan, N. Nakamura, S. Senoh: Resolution into optical isomers of some amino acids by paper chromatography; Journal of the American Chemical Society, 73 (1951) 2973.
  • 30. W. Mayer, F. Merger: Darstellung optisch aktiver Catechine durch Racemattrennung mit Hilfe der Adsorptionschromatographie an Cellulose; Liebigs Annalen der Chemie, 644 (1961) 65.
  • 31. A. Lüttringhaus, U. Hess, H.-J. Rosenbaum: I. Mitt.1: Optisch aktives 4.5.6.7-Dibenzo-1.2- dithiacyclooctadien; Zeitschrift für Naturforschung B, 22 (1967) 1296.
  • 32. G. Hesse, R. Hagel: Eine vollständige Recemattennung durch eluitons -chromagographie an cellulosetri-acetat; Chromatographia, 6 (1973) 277.
  • 33. Y. Okamoto, M. Kawashima, K. Hatada: Chromatographic resolution. 7. Useful chiral packing materials for high-performance liquid chromatographic resolution of enantiomers: phenylcarbamates of polysaccharides coated on silica gel; Journal of the American Chemical Society, 106 (1984) 5357.
  • 34. T. Ikai, C. Yamamoto, M. Kamigaito, Y. Okamoto: Enantioseparation by HPLC using phenylcarbonate, benzoylformate, p-toluenesulfonylcarbamate, and benzoylcarbamates of cellulose and amylose as chiral stationary phase; Chirality, 17 (2005) 299.
  • 35. E. Yashima: Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation; Journal of Chromatography A, 906 (2001) 105.
  • 36. H.Y. Aboul-Enein, A. Imran: Optimization strategies for HPLC enantioseparation of racemic drugs using polysaccharides and macrocyclic glycopeptide antibiotic chiral stationary phases; IL Farmaco, 57 (2002) 513.
  • 37. D.W. Armstrong, Y. Tang , S. Chen , Y. Zhou , C. Bagwill , J.R. Chen: Macrocyclic antibiotics as a new class of chiral selectors for liquid chromatography; Analytical Chemistry, 66 (1994) 1473.
  • 38. I. Ilisz, A. Aranyi, Z. Pataj, A. Péter: Enantioseparations by High-Performance Liquid Chromatography Using Macrocyclic Glycopeptide-Based Chiral Stationary Phases: An Overview. Chiral Separations; Humana Press (2013) 137.
  • 39. I. Ilisz, B. Róbert, P. Antal: HPLC separation of amino acid enantiomers and small peptides on macrocyclic antibiotic‐based chiral stationary phases: A review; J. Sep. Sci. 29 (2006) 1305.
  • 40. D. Misiti, M. Pierini, C. Villani: 2 HPLC Chiral Stationary Phases Containing Macrocyclic Antibiotics: Practical Aspects and Recognition Mechanism; Advances in Chromatography, 46 (2007) 109.
  • 41. I. Ilisz, B. Róbert, P. Antal: Retention mechanism of high-performance liquid chromatographic enantioseparation on macrocyclic glycopeptide-based chiral stationary phases; Journal of Chromatography A, 1216 (2009) 1845.
  • 42. A. Berthod, Y. Liu, C. Bagwil, D.W. Armstrong: Facile liquid chromatographic enantioresolution of native amino acids and peptides using a teicoplanin chiral stationary phase; Journal of Chromatography A, 731 (1996) 123.
  • 43. K.H. Ekborg-Ott, Y. Liu, D.W. Armstrong: Highly enantioselective HPLC separations using the covalently bonded macrocyclic antibiotic, ristocetin A, chiral stationary phase; Chirality, 10 (1998) 434.
  • 44. K.K. Stewart, R.F. Doherty: Resolution of DL-Tryptophan by Affinity Chromatography on Bovine-Serum Albumin-Agarose Columns; Proceedings of the National Academy of Sciences, 70 (1973) 2850.
  • 45. M.H. Hyun: Characterization of liquid chromatographic chiral separation on chiral crown ether stationary phases; Journal of Separation Science, 26 (2003) 242.
  • 46. S. Allenmark: Chromatographic Enantioseparation. Methods and Applications, 2nd ed., Ellis Horwood, (1991) Ch.7.
  • 47. M. Nakamura, S. Kiyohara, K. Saito, K. Sugita, T. Sugo: High Resolution of dl-Tryptophan at High Flow Rates Using a Bovine Serum Albumin-Multilayered Porous Hollow-Fiber Membrane; Analytical Chemistry, 71 (1999) 1323.
  • 48. E. Domenici, C. Bertucci, P. Salvadori, G. Felix, I. Cahagne, S. Montellier, I.W. Wainer: Synthesis and chromatographic properties of an HPLC chiral stationary phase based upon human serum albumin; Chromatographia, 29 (1990) 170.
  • 49. J. Haginaka: Protein-based chiral stationary phases for high-performance liquid chromatography enantioseparations; Journal of Chromatography A, 906 (2001) 253.
  • 50. www.usp.org (data dostępu: 11.01.2015).
  • 51. P. Erlandsson, I. Marle, L. Hansson, R. Isaksson, G. Pettersson, C. Pettersson: Immobilized cellulase (CBH I) as a chiral stationary phase for direct resolution of enantiomers; Journal of the American Chemical Society, 112 (1990) 4573.
  • 52. M.H. Hyun, SC. Han, BH. Lipshutz, YJ. Shin, CA. Welch: New chiral crown ether stationary phase for the liquid chromatographic resolution of alpha-amino acid enantiomers; Journal of Chromatography A, (2001) 359.
  • 53. M.H. Hyun: Characterization of liquid chromatographic chiral separation on chiral crown ether stationary phases; Journal of Separation Science, 26 (2003) 242.
  • 54. M. Tang, J. Zhang, S. Zhuang, W. Liu: Development of chiral stationary phases for high-performance liquid chromatographic separation; Trends in Analytical Chemistry, 39 (2012) 180.
  • 55. T. Ward, J. Timothy, K.D. Ward: Chiral separations: a review of current topics and trends; Analytical Chemistry, 84 (2011) 626.
  • 56. Z. Wang, J. Ouyang, W. Baeyens: Recent developments of enantioseparation techniques for adrenergic drugs using liquid chromatography and capillary electrophoresis: A review; Journal of Chromatography B, 862 (2008) 1.
  • 57. A.M. Blum, K.G. Lynam, E.C. Nicolas: Use of a new Pirkle-type chiral stationary phase in analytical and preparative subcritical fluid chromatography of pharmaceutical compounds; Chirality, 6 (1994) 302.
  • 58. M.H. Hyun, Y.J. Cho: Chiral Separation by HPLC With Pirkle-Type Chiral Stationary Phases. Chiral Separations; Humana Press, (2004) 197.
  • 59. S.E. Layton: Comparison of various chiral stationary phases for the chromatographic separation of chiral pharmaceuticals; Praca magisterska; University of North Carolina Wilmington (2005).
  • 60. T. Arai: Chiral separation of pharmaceuticals possessing a carboxy moiety; Journal of Chromatography B, 717 (1998) 295.
  • 61. M. Lämmerhofer, L. Wolfgang: Quinine and quinidine derivatives as chiral selectors I. Brush type chiral stationary phases for high-performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers. Journal of Chromatography A, 741 (1996) 33.
  • 62. www.drugs.com (data dostępu: 11.01.2015).
  • 63. A.R. Ribeiro, A.S. Maia, Q.B. Cass, M.E. Tiritan: Enantioseparation of chiral pharmaceuticals in biomedical and environmental analyses by liquid chromatography: An overview, Journal of Chromatography B, 968 (2014) 8.
  • 64. J. Ye, J. Wu, W. Liu: Enantioselective Separation and Analysis of Chiral Herbicides; Trends in Analytical Chemistry, 28 (2009) 1148.
  • 65. J.J. Ellington: High-performance liquid chromatographic separation of the enantiomers of organophosphorus pesticides on polysaccharide chiral stationary phases; Journal of Chromatography A, 928 (2001) 145.
  • 66. V. Pérez-Fernández, M.Á. García, M.L. Marina: Chiral separation of agricultural fungicides; Journal of Chromatography A, 1218 (2011) 6561.
  • 67. J. Debowski, D. Sybilska, J. Jurczak, β-cyclodextrin as a chiral component of the mobile phase for separation of mandelic acid into enantiomers in reversed-phase systems of high-performance liquid chromatography, Journal of Chromatography A, 237(1982) 303.
  • 68. D. Sybilska, J. Żukowski, J. Bojarski, Resolution of Mephenytoin and Some Chiral Barbiturates into Enantiomers by Reversed Phase High Performance Liquid Chromatography via β-Cyclodextrin Inclusion Complexes, Journal of Liquid Chromatography, 9 (1986) 591.
  • 69. J. Żukowski, D. Sybilska, J. Jurczak, Resolution of ortho, meta, and para isomers of some disubstituted benzene derivatives via .alpha.- and .beta.-cyclodextrin inclusion complexes, using reversed-phase high-performance liquid chromatography, Analytical Chemistry, 12 (1985) 2215.
  • 70. D. Sybilska, J. Lipkowski, J. Wóycikowski, α-Cyclodextrin as selective agent for the separation of o-, mand p-nitrobanzoic acids by reversed-phase high-performance liquid chromatography, Journal of Chromatography A, 253 (1982) 95.
  • 71. J. Debowski, J. Jurczak, D. Sybilska, Resolution of some chiral mandelic acid derivatives into enantiomers by reversed-phase high-performance liquid chromatography via α- and β-cyclodextrin inclusion complexes, Journal of Chromatography A, 237 (1982) 303.
  • 72. J. Żukowski, D. Sybilska, Application of α- and β-cyclodextrin and heptakis(2,6-di-O-methyl)-β- cyclodextrin as mobile phase components for the separation of some chiral barbiturates into enantiomers by reversed-phase high-performance liquid chromatography, Journal of Chromatography A, 364 (1986) 225.
  • 73. J. Żukowski, D. Sybilska, J. Bojarski, J. Szejtli, Resolution of chiral barbiturates into enantiomers by reversed-phase high-performance liquid chromatography using methylated β-cyclodextrins, Journal of Chromatography A, 436(1988)331.
  • 74. A. Bielejewska, R. Nowakowski, K. Duszczyk, D. Sybilska, Joint use of cyclodextrin additives in chiral discrimination by reversed-phase high-performance liquid chromatography: temperature effects, Journal of Chromatography A, 840 (1999) 159.
  • 75. M. Asztemborska, M. Miśkiewicz, D. Sybilska, Separation of some chiral flavanones by micellar elektrokinetic chromatography, Electrophoresis, 24 (2003) 2527.
  • 76. M. Asztemborska, A. Bielejewska, K. Duszczyk, D. Sybilska, Comparative study on camphor enantiomers behavior under the conditions of gas–liquid chromatography and reversed-phase highperformance liquid chromatography systems modified with α- and β-cyclodextrins, Journal of Chromatography A, 874 (2000) 73.
  • 77. D. Sybilska, J. Debowski, J. Jurczak, J. Zukowski, α-and β-cyclodextrin complexation as a tool for the separation of o-, m- and p-nitro-cis and trans-cinnamic acids by reversed-phase high-performance liquid chromatography, Journal of Chromatography A, 286 (1984) 163.
  • 78. D. Sybilska, A. Bielejewska, R. Nowakowski, K. Duszczyk, Improved chiral recognition of some compounds via the simultaneous use of β-cyclodextrin and its permethylated derivative in a reversedphase high-performance liquid chromatographic system, Journal of Chromatography A, 625 (1992) 349
  • 79. T. Kowalska, J. Sherma, Thin Layer Chromatography in Chiral Separations and Analysis, Chromatographic Science Series, 2007.
  • 80. M. Śliwka, M. Ślebioda, A.M. Kołodziejczyk, Dynamic ligand-exchange chiral stationary phase derived from aminoalcohol, Chemia Analityczna, 42 (1997) 895.
  • 81. M. Śliwka, M. Ślebioda, A.M. Kołodziejczyk, Dynamic ligand-exchange chiral stationary phases derived from N-substituted (S)-phenyloglycinol selectors, Journal of Chromatography A, 824 (1998) 7.
  • 82. M. Śliwka-Kaszyńska, Chromatograficzne metody rozdzielania związków optycznie czynnych w: M. Kamiński (red.), Chromatografia Cieczowa, Wydawnictwo Politechniki Gdańskiej link: http://www.pg.gda.pl/chem/Katedry/Inzynieria/index.php/pl/matpomoc.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10b2d137-ae8b-4045-97c0-e51cc306ceac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.