
COMPUTER SCIENCE AND MATHEMATICAL MODELLING 5 11−16 (2017)

 11

Software environment for rapid prototyping
of graph and network algorithms

K. BANACH, R. KASPRZYK

kamil@banach.net.pl, rkasprzyk@wat.edu.pl

Institute of Computer and Information Systems
Faculty of Cybernetics, Military University of Technology

Kaliskiego Str. 2, 00-908 Warsaw

The article presents an innovative software environment for rapid prototyping of graph and network
algorithms. The environment consists of two main components: an editor of graphs & networks and an editor
of algorithms’ code. The presented environment enables interactive visualization of algorithms implemented
therein, which in turn allows quick verification of algorithms results as well as its correctness. The aim of
the environment construction was to provide a solution for rapid prototyping of novel algorithms.
The developed tool can also be successfully used for educational purposes.

Keywords: graph and network theory, algorithms prototyping, algorithms visualization.

1. Introduction

Last years have seen a huge interest in network
systems. The number of interdisciplinary
researches undertaken in this field is affected by
the strategic importance of network systems,
particularly from the perspective of crisis
management. In fact, networks, which are
understood as sets of vertices and branches for
representing different kinds of relationships
between vertices, are ubiquitous. There are many
examples of systems modelled with the use of
networks, including the Internet, WWW,
transport networks, transmission networks,
electrical grids, and finally social networks.

Nowadays, graph and network theory is
used to model, explore and optimise network
systems [2], [3], [4], [5]. There are lots of graph
and network algorithms, which help researchers
or decision makers to resolve theoretical or
practical problems e.g. shortest path in graphs
and networks, minimum spanning trees or graph
colouring. It’s worth to mention that in the 90s,
researches started focus on creating of a wide
range of algorithms which model the evolution
of genuine graphs and networks.

The challenge facing us is to provide
software solution for rapid prototyping of novel
graph and network algorithms. The presented
environment enables interactive visualization of
algorithms implemented therein, which in turn
allows quick verification of the algorithms
results as well as its correctness. The developed
tool can also be successfully used for
educational purposes.

2. Definition and notation

Graph is an abstract representation of the
structure of any system. Formally, graph can be
defined as follows [1], [6]:

, ,G V B I= (1)
where:
V – a set of graph vertices;
B – a set of graph branches;
I – an incident relation (I V B V⊂ × ×), which

 meets two conditions:
1) , , ,b B x y V x b y I∀ ∈ ∃ ∈ ∈

2)
, , ,

, , , ,
() ()

b B x y v z V
x b y I v b z I

x v y z x z y v

∀ ∈ ∃ ∈

∈ ∧ ∈ ⇒

= ∧ = ∨ = ∧ =

Based on the incident relation I , three types of
branches can be indicated:
B – a set of edges, which meets a condition
 , , , ,x b y I y b x I x y∈ ∧ ∈ ∧ ≠

B


 – a set of arcs, which meets a condition
 , , , ,x b y I y b x I x y∈ ∧ ∉ ∧ ≠
B – a set of loops, which meets a condition
 , ,x b x I∈

Fig. 1. Graph example: vertices – 1, 2, 3, 4;
edge – c; arcs – a, b, e; loop – d

Kamil Banach, Rafał Kasprzyk, Software environment for rapid prototyping of graph and network algorithms

 12

In the Figure 1 there is an example graph
with four vertices, one edge, three arcs and one
loop. Numbers and letters on vertices and
branches are so called labels. It is worth to
mention that labels are introduced only for
identification of those elements (vertices and
branches). It means that labels are not
the description of the systems modeled using
graphs. To describe elements of graph a concept
called network is introduced.

Let’s now define the network as follows:

{1,..., } {1,..., },{ ()} ,{ ()}i i NF j j NH
v V b B

N G f v h b∈ ∈
∈ ∈

= (2)

where:
G – is the graph defined by (1);

:i if V ValV→ – the i-th function on the graph

vertices, 1,..,i NF= , (NF – number of vertex

functions), iValV – is a set of if values;
:j jh B ValB→ – the j-th function on the graph

branches, 1,..,j NH= , (NH – number of

branch functions), jValB – is a set of jh values.

Fig. 2. Network example: two functions described on

vertices and three functions described on branches

In the Figure 2 we can see a network
example based on the graph from the Figure 1.
Results of functions on vertices and branches are
commonly called weights. In example above we
can see text and numerical weights.

Networks are commonly referred to as
weighted graphs by many authors. There are lots
of other concepts, which are used in graph
theory. A directed graph, called also digraph, is a
graph which contains only arcs and loops (set of
edges is empty). An undirected graph is a graph
which contains only edges and loops (set of arcs
is empty). A multigraph is a graph which can
have multiple branches of the same type between

the same pair of vertices. Opposite to multigraph
is an unigraph which not allows to have multiple
branches of the same type between two vertices.

Also in literature we can notice different
names for vertices and branches i.e. vertices are
called nodes, edges are called lines and arcs
are called directed edges or directed lines.

3. The concept of the environment

During many researches we used different
software solutions. Every one of them demanded
of us learning about their architecture, used
technologies, libraries and dependencies. There
were many restrictions when we tried to adapt
them to our needs. Any current existing
environments doesn’t allow us to simply write
and test algorithms.

For the reasons given above we wanted to
create a simple, but extensible, environment,
where users can just type in and test graph and
network algorithms. In addition, that
environment should be used by end users
without downloading and installing additional
software. That requirements are met by
the web application which can be run in any
web browsers.

Created environment allows user to quickly
type algorithm in JavaScript language and test it.
We believe that choose of JavaScript (to be
exact – some subset of it), as a language used to
describe algorithms, is most appropriate choice,
because of its simplicity. Also its syntax is
similar to many other widely used languages like
C# or Java.

4. The architecture and GUI of the

software environment

The solution – the software environment for
rapid prototyping of graph and network
algorithms – that was created, contains two
connected software components.

The first component is visual editor which
allows to create and modify a graph or
a network. It allows to set various properties of
created vertices and branches like colour or
weights (both number and text).

The second component, called algorithm’s
code editor allows to type an algorithm and run
it in an isolated environment – sandbox. Inside
of this part there is an interpreter which parses
code into the Abstract Syntax Tree (AST). Code
is interpreted and run by walking over that tree.
Because it’s not intuitive for people to run
algorithm in this way, our modification of
interpreter allows user to run an algorithm line

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 5 11−16 (2017)

 13

by line. Thanks to that modification user can
easily track execution of any graph and network
algorithms.

The main screen of the software
environment is presented in the Figure 3.

Fig. 3. The main screen of the environment

In the Figure 4. is presented a window for

editing node’s properties.

Fig. 4. Edit node screen

Both components i.e. the visual editor and

the code editor are connected by shared
JavaScript objects. These objects allow to use
a graph or a network created in the visual editor
during the execution of algorithms implemented
in the code editor. What is more, the outcomes
of the algorithm’s execution is presented in real-
-time on a graph or a network drawn within
the visual editor.

5. Technologies and libraries used to

create environment

The environment, as stated before, was created
as the web application. That implies splitting
the software into tiers, for our purpose two tiers.

First tier, in literature often called backed,
in our case is responsible for communication
with a database. It’s built with usage of the
Spring Framework [8]. One part of that
framework, Spring Data, was used to

communicate with non-relational database
MongoDB [9]. In the database there are stored
data about saved graphs, networks and
algorithms.

Second tier, called frontend, is a graphical
user interface, containing two components
mentioned in section 4. It was built in modern
web technologies with Open Source libraries:
• JS-Interpreter [10] as algorithms

interpreter;
• CodeMirror [11] as text editor with syntax

coloring;
• D3.js [12] as graph and network

visualization library;
• jQuery [13] to communicate with backend

part.
Both tiers are bundled into one package,

which can be deployed to any Java application
server e.g. Wildfly or Jetty.

6. Algorithms build in interpreter

There are some algorithms embedded into
the software environment for rapid prototyping.
The algorithms are divided into four groups:
• basic graph algorithms;
• basic network algorithms;
• graph and network creation algorithms;
• diffusion in networks.

The first group, basic graph algorithms,
contains algorithms that operate only on graph.
There are three built-in algorithms: Breadth
First Search, Deep First Search and Largest
First Coloring algorithm.

The second group, basic network algorithms,
contains two algorithms that operate on
networks. Those algorithms are Prim’s
Algorithm that finds Minimum Spanning Tree on
networks and Dijkstra’s Algorithm that finds
Shortest Paths in networks.

The third group, graph and network creation
algorithms, at present contains only one
algorithm – Barabási-Albert model which
generate so called Scale Free networks. That
model is based on two main assumptions:
constant growth and preferential attachment.

The fourth group is empty for now but it
will include algorithms for simulation of
different kind of phenomenon in networks [5].

The list of algorithms can be easily
expanded. The software environment for rapid
prototyping of graph and network algorithms
contains all tools necessary to create any graph
or network algorithm. Users of the software are
able to manipulate weights or colors of vertices
and branches. Also there is a possibility to add

Kamil Banach, Rafał Kasprzyk, Software environment for rapid prototyping of graph and network algorithms

 14

new vertices and branches. That means ones can
shape graphs and networks directly within visual
editor or indirectly using the code editor.

In the Figure 5. we can see code and results
of running the Largest First Coloring algorithm.

Fig. 5. Screenshot with result of running the Largest
First Coloring algorithm

7. Simple case study

As a simple case study we will slightly modify
basic Barabási-Albert model by adding starting
vertex attractiveness to a probability of
connection to already existing vertices within
a graph [7]. The probability for vertex i will be
calculated as follows:

1

()
()

i
n

j
j

k aP i
k a

=

+
=

+∑
 (3)

where:
a – starting vertex attractiveness;

ik – degree of vertex i;
n – number of vertices in a graph.

In Figure 6 we can see source code of

the elementary Barabási–Albert model labelled
function BA. It has three parameters:
m0 – size of initial full graph;
N – number of vertices to add;
M – number of arcs to add with a vertex.

Most interesting for us is line 21, where

the probability of connection to randomly
selected vertex is calculated.

Fig. 6. Screenshot with code of BA generation
algorithm

Let’s start modification of the elementary

Barabási–Albert model by adding additional
parameter a (our starting attractiveness) to
the signature of function BA. Next we have to
modify line 21, where the probability of
selecting randomly chosen vertex is calculated.
For the part above the fraction bar it is obvious –
simply adding the parameter a is enough.
For the part under the fraction bar it seems
to be more complicated – we need to add
the parameter to every vertex degree.

Let’s look at the sum in (3). We can split it
into two independent sums:

1 1

() i
n n

j
j k

k aP i
k a

= =

+
=

+∑ ∑
 (4)

As we can see, the second sum can be

simplified to n a∗ . That allows us to simply
write:

1

() i
n

j
j

k aP i
k n a

=

+
=

+ ∗∑
 (5)

We can now get the part under the fraction

bar by simply adding sum of all vertices degrees
and the parameter a n-times. Number of nodes
can be accessed by property ,nodes.length so
we will simply write .nodes.length a∗

Modified function BA, algorithm with
starting attractiveness, is presented in Figure 7.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 5 11−16 (2017)

 15

Fig. 7. Screenshot with code of BA generation
algorithm with starting node attractiveness

8. Summary

Presented software environment is a modern
solution for rapid graph and network algorithm
prototyping. It enables interactive visualization
of algorithm which in return allows to quick
verification of the results and algorithms
correctness.

Moreover, environment can be also
successfully used for educational purposes e.g.
on courses include graph and network theory.

9. Bibliography

[1] Korzan B., Elementy teorii grafów i sieci.

Metody i zastosowania, WNT, 1978.
[2] Tarapata Z., Kasprzyk R., “An application

of multicriteria weighted graph similarity
method to social networks analyzing”,
in: Proceedings of the 2009 International
Conference on Advances in Social Network
Analysis and Mining, July 20–22, 2009,
Athens, Greece, pp. 366–368, IEEE
Computer Society, 2009.

[3] Tarapata Z., Kasprzyk R., “Graph-Based
Optimization Method for Information
Diffusion and Attack Durability in
Networks”, in: RSCTC 2010, LNAI 6086,
pp. 698–709, Springer, Heidelberg, 2010.

[4] Bartosiak C., Kasprzyk R., Tarapata Z.,
“Application of Graphs and Networks
Similarity Measures for Analyzing
Complex Networks”, Biuletyn Instytutu
Systemów Informatycznych, Vol. 7, 1–7
(2011).

[5] Kasprzyk R., “Diffusion in Networks”,
Journal of Telecommunications and
Information Technology, Vol. 2, 99–106
(2012).

[6] Diestel R., Graph Theory, Springer-Verlag
Berlin Heidelberg, 2010.

[7] Fronczak A., Fronczak P., Świat sieci
złożonych. Od fizyki do Internetu,
Wydawnictwo Naukowe PWN, Warszawa,
2009.

[8] Spring Framework project webpage,
https://spring.io/

[9] MongoDB project webpage,
https://www.mongodb.com/

[10] JS-Interpreter project source code,
https://github.com/NeilFraser/JS-Interpreter

[11] CodeMirror project webpage,
https://codemirror.net/

[12] D3.js project webpage, https://d3js.org/
[13] jQuery project webpage, https://jquery.com/

Kamil Banach, Rafał Kasprzyk, Software environment for rapid prototyping of graph and network algorithms

 16

Środowisko programowe do szybkiego prototypowania algorytmów
grafowo-sieciowych

K. BANACH, R. KASPRZYK

Artykuł ma na celu przedstawienie autorskiego środowiska programowego do prototypowania algorytmów
grafowo-sieciowych. Środowisko składa się z dwóch głównych komponentów wzajemnie od siebie zależnych,
tj. edytora grafów i sieci oraz edytora kodu algorytmów. Prezentowane środowisko umożliwia interaktywną
wizualizację implementowanych w nim algorytmów, co w konsekwencji pozwala na szybką weryfikację
efektów działania algorytmu, w tym jego poprawność. Celem budowy środowiska było dostarczenie rozwiązania
pozwalającego na szybkie prototypowanie nowych algorytmów. Opracowane narzędzie może również zostać
z powodzeniem wykorzystane do celów dydaktycznych.

Słowa kluczowe: teoria grafów i sieci, prototypowanie algorytmów, wizualizacja algorytmów.

