PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The area-dynamic approach to the assessment of the risks of ship collision in the restricted water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, two indexes for own ship risk collision assessment in the restricted water are proposed. The first one concerns the collision threats for ships. The second one describes threats that are generated by human error. It is carried out dynamically with accordance to changes in time. To realize the main aim of the paper, the definition of the extended domain of the ship is introduced. Furthermore, the rules to determine the indexes and range of their values are developed. Finally, a comprehensive model and its potential application are presented. There are some important things to take into account during the model development: the interface, the levels and type of the output information, the type and accuracy of the information about the position and movement dynamics of the particular ships. It gives the opportunity to consider the different operation levels. In addition, it also allows us to take into account the different levels of measurement and the collision risk warnings. This approach can be helpful for both the VTS operator and OOW, the ship’s navigator, as the tool to support the safe navigation in restricted water.
Rocznik
Strony
88--93
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • Gdynia Maritime University, Faculty of Navigation. Department of Mathematics
autor
  • Gdynia Maritime University, Faculty of Navigation. Department of Transport and Logistic
autor
  • Gdynia Maritime University, Faculty of Navigation. Department of Navigation
Bibliografia
  • 1. Coldwell, T.G. (1983) Marine Traffic Behaviours in Restricted Waters. Journal of Navigation 36 (3). pp. 430–444.
  • 2. Fujii, Y. & Tanaka, K. (1971) Traffic capacity. Journal of Navigation 24 (4). pp. 543–552.
  • 3. Galor, W. (2009) The Role of Navigational Risk Assessment During Ship’s Manoeuvring in Limited Waters. Journal of KONES Powertrain and Transport 16 (2). pp. 117– 124.
  • 4. Goodwin, E.M. (1975) A statistical study of ship domain. Journal of Navigation 28 (3). pp. 328–344.
  • 5. Guze, S. (2011) Model bezpieczeństwa nawigacyjnego statku na akwenie otwartym w aspekcie podejmowania decyzji. Ph. D. Thesis, Szczecin (in Polish).
  • 6. Jingsong, Z., Zhaolin, W. & Fengchen, W. (1993) Comments on ship domains. Journal of Navigation 46 (3). pp. 422–436.
  • 7. Kao, S.-L., Lee, K.-T., Chang, K.-Y. & Ko, M.-D. (2007) A fuzzy logic method for collision avoidance in vessel traffic service. The Journal of Navigation 60 (1). pp. 17–31.
  • 8. Montewka, J., Goerlandt, F., Lammi, H. & Kujala, P. (2011) A Method for Assessing a Causation Factor for a Geometrical MDTC Model for Ship-Ship Collision Probability Estimation. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation 5 (3). pp. 365–373.
  • 9. Pietrzykowski, Z. & Uriasz, J. (2009) The ship domain – a criterion of navigational safety assessment in an open sea area. Journal of Navigation 62 (1). pp. 93–108.
  • 10. Pietrzykowski, Z. & Wielgosz, M. (2011) Navigation Safety Assessment in the Restricted Area with the Use of ECDIS. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation 5 (1). pp. 29– 35.
  • 11. Pietrzykowski, Z. (2004) Modelowanie procesów decyzyjnych w sterowaniu ruchem statków morskich. Szczecin: Wydawnictwo Naukowe Akademii Morskiej.
  • 12. Pietrzykowski, Z. (2008) Ship’s fuzzy domain – a criterion of navigational safety in Narrow Fairways. Journal of Navigation 61 (3). pp. 499–514.
  • 13. Pietrzykowski, Z., Magaj, J. & Chomski, J. (2009) A navigational decision support system for sea-going ships. Pomiary Automatyka Kontrola (Measurement Automation and Monitoring) 10. pp. 860–863.
  • 14. Rutkowski, G. (1998) Domena statku a bezpieczeństwo nawigacji na akwenach trudnych pod względem nawigacyjnym. Prace Wydziału Nawigacyjnego WSM w Gdyni 6, Gdynia.
  • 15. Skorupski, J. (2010) Air traffic smoothness as a measure of air traffic safety, Reliability Risk and Safety. London: Taylor & Francis Group/Balkema.
  • 16. Śmierzchalski, R. & Weintrit, A. (1999) Domains of navigational objects as an aid to route planning in collision situation at sea. In: Proc. of 3rd Navigational Symposium, Gdynia Maritime Academy, Gdynia, 265–279 (in Polish).
  • 17. Szłapczyński, R. & Szłapczyńska, J. (2015) A Simulative Comparison of Ship Domains and Their Polygonal Approximations. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation 9 (1). pp. 135–141.
  • 18. Wang, N., Meng, X., Xu, Q. & Wang, Z. (2009) A Unified Analytical Framework for Ship Domains. Journal of Navigation 62 (4). pp. 643–655.
  • 19. Węgierski, J., (1971) Probabilistic methods in railway transport engineering. Warsaw: WKiŁ.
  • 20. Weintrit, A. (2009) The Electronic Chart Display and Information System (ECDIS). An Operational Handbook. CRC Press Inc. Taylor and Francis Group, p. 1101.
  • 21. Wielgosz M. & Pietrzykowski Z. (2012) Ship domain in the restricted area – analysis of the influence of ship speed on the shape and size of the domain. Scientific Journals Maritime University of Szczecin 30 (102). pp. 138–142.
  • 22. Woch, J. (1983) Principles of railway engineering. Warsaw: WKiŁ.
  • 23. Zhao, J.,Wu, Z. & Wang, F. (1993) Comments of ship domains. Journal of Navigation 46 (3). pp. 422–437.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10ae1a94-c3cf-406e-af31-302ddb4709dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.