Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In many industries, including aerospace, several operations involving making holes are performed. Small-diameter holes pose a technological problem when obtaining the right diameter and achieving size and shape accuracy is difficult. Various methods are used to achieve the manufacturing goal, including laser processing. The article presents the results of experimental research on producing micro-holes with a laser of 1 mm diameter and in the range of 0.1÷0.5 mm according to the multiple beam cutting strategy. The quality of the holes was assessed in microscopic tests, diameter measurements were performed, dimensional deviations and ovality were determined. The cutting efficiency affecting the number of beam pass repetitions was checked. It was found that cutting 1 mm is most effective at 20 W power, 20 kHz pulse frequency, 100 mm/s scanning speed and 90 paths. The dimensional spread (for 10 measurements) was 0.026 mm and the dimensional deviation was positive. For smaller holes, the most advantageous was the processing with a 20 W beam, 20 mm/s speed, 20 kHz frequency, and 20 passes for 0.5 mm (with a spread of 0.020 mm). This number decreased with decreasing diameter and for 0.1 mm it was 8. In the case of 0.1÷0.5 mm holes a minus dimensional deviation was observed, while repeatability and accuracy decreased with decreasing diameter.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
132--150
Opis fizyczny
Bibliogr. 44 poz., fig., tab.
Twórcy
autor
- Faculty of Mechanical Engineering and Aeronautics, Department of Manufacturing Processes and Production Engineering, Rzeszow University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
- Faculty of Mechanical Engineering and Aeronautics, Department of Manufacturing Processes and Production Engineering, Rzeszow University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
- 1. Biswas R., Das M.Ch., Bhattacharyya S., Kuar A.S., Mitra S. Selection of Nd:YAG laser beam micro-drilling parameters using multicriteria decision making methods. Optics and Laser Technology 2019; 119: 105596.
- 2. Sezer H.K., Li L. Mechanisms of acute angle laser drilling induced thermal barrier coating delamination. J. Manuf. Sci. Eng. Oct 2009, 131(5): 051014.
- 3. Beck N., Landa T., Seitz A., Boermans L., Liu Y., Radespiel R. Drag reduction by laminar flow control. Energies 2018; 11(1): 252.
- 4. Zhang T., Liu Z., Xu Ch. Influence of size effect on burr formation in micro cutting. Int J Manuf Technol 2013; 68: 1911–1917. DOI 10.1007/s00170-013-4801-8.
- 5. Biswas R., Kuar A.S., Mitra S. Multi-objective optimization of hole characteristics during pulsed Nd:YAG laser microdrilling of gamma-titanium aluminide alloy sheet. Optics and Lasers in Engineering 2014; 60: 1–11.
- 6. Jin S.Y., Pramanik A., Basak A.K., Prakash C., Shankar S., Debnath S. Burr formation and its treatments – a review. The International Journal of Advances Manufacturing Technology 2020; 107: 2189–2210. DOI 10.1007/s00170-020-05203-2.
- 7. Chae J., Park S.S., Freiheit T. Investigation of micro-cutting operations. Int. Journal of Machine Tools & Manufacture 2006; 46: 313–332.
- 8. Chang D.Y., Lin S.Y. Tool Wear, Hole Characteristics, and Manufacturing Tolerance in Alumina Ceramic Microdrilling Process. DOI 10.1080/10426914.2011.577881.
- 9. Thepsonthi T., Özel T. 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: Experimental validations on chip flow and tool wear. Journal of Materials Processing Technology 2015; 221: 128–145.
- 10. Frazier A.B., Warrington R.O., Friedrich C. The Miniaturization Technologies: Past, Present, and Future. IEEE Transactions on Industrial Electronics 1995; 42(5).
- 11. Arrizubieta I., Lamikiz A., Martínez S., Ukar E., Tabernero I., Girot F. Internal characterization and hole formation mechanism in the laser percussion drilling process. International Journal of Machine Tools & Manufacture 2013; 75: 55–62.
- 12. Weule H., Hüntrup V., Trischler H. Micro-Cutting of Steel to Meet New Requirements in Miniaturization. CIRP Annals 2001; 50(1): 61–64.
- 13. Shi C., Ren N., Wang H., Xia K., Wang L. Effects of ultrasonic assistance on microhole drilling based on Nd:YAG laser trepanning. Optics and Laser Technology 2018; 106: 451–460. DOI 10.1016/j.optlastec.2018.05.003.
- 14. Mishra S., Yadava V. Laser beam micromachining (LBMM) – A review. Optics and Lasers in Engineering 2015; 73: 89–122.
- 15. Zhang S., Fan Y., Huang Y., Yang X., Zhang M., Luo J., Deng G., Zhou Q., Song H., Wang Y. Improvement of the surface condition of laser-drilled holes via a dual-wavelength double-pulse train. Optics & Laser Technology 2023; 157: 108681.
- 16. Goyal R., Dubey A.K. Modeling and optimization of geometrical characteristics in laser trepan drilling of titanium alloy. J. Mech. Sci. Technol. 2016; 30: 1281–1293.
- 17. Goyal R., Dubey A.K. Quality improvement by parameter optimization in laser trepan drilling of superalloy sheet. Mater. Manuf. Process. 2014; 29: 1410–1416.
- 18. Shi Ch., Ren N., Wang H., Xia K., Wang L. Effects of ultrasonic assistance on microhole drilling based on Nd:YAG laser trepanning. Optics and Laser Technology 2018; 106: 451–460.
- 19. Ashkenasi D., Kaszemeikat T., Mueller N., Dietrich R., Eichler H.J., Illing G. Laser trepanning for industrial applications. Phys. Procedia 2011; 12: 323–331.
- 20. Jahns D., Kaszemeikat T., Mueller N., Ashkenasi D., Dietrich R., Eichler H.J. Laser trepanning of stainless steel. Phys. Procedia 2013; 41: 630–635.
- 21. Shivakoti I., Kibria G., Pradhan B.B. Predictive model and parametric analysis of laser marking process on gallium nitride material using diode pumped Nd:YAG laser. Opt. Laser Technol. 2019; 115: 58–70.
- 22. Weck A., Crawford T.H.R., Wilkinson D.S., Haugen H.K., Preston J.S. Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses. Appl Phys Mater Sci Process 2008; 90(3): 537–543.
- 23. Liu X., DeVor R.E., Kapoor S.G., Ehman K.F. The mechanics of machining at the micro scale: assessment of the current state of the science. Journal of Manufacturing Science and Engineering 2004; 126: 666–678.
- 24. Kolahdouz S., Hadi M., Arezoo B., Zamani S. Investigation of surface integrity in high speed milling of gamma titanium aluminide under dry and minimum quantity lubricant conditions. Proc. CIRP 2015; 26: 367–372.
- 25. Alting L., Kimura F., Hansen H.N., Bissacco G. Micro engineering. Annals of CIRP Keynote 2003 STC-O.
- 26. Steen W.M., Mazumder J. Laser material processing. 4th ed. New York, Springer, 2010.
- 27. Marimuthu S., Antar M., Dunleavey J. Characteristics of micro-hole formation during fibre laser drilling of aerospace superalloy. Precision Engineering 2019; 55: 339–348.
- 28. Kraus M., Collmer S., Sommer S., Friedrich D. Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation. J Laser Micro/Nanoeng. 2008; 3(3): 129–134.
- 29. Friedman H.W., Pierce E.L. Precision micron hole drilling using a frequency doubled, diode pumped solid state laser. Lawrence Livermore National Laboratory Report 2004. https://doi.org/10.2172/15014643. UCRL-TR-208902.
- 30. Khan A.H., Celotto S., Tunna L., O’Neill W., Sutcliffe C.J. Influence of microsupersonic gas jets on nanosecond laser percussion drilling. Optic Laser Eng 2007; 45(6): 709–718.
- 31. Weck A., Crawford T.H.R., Wilkinson D.S., Haugen H.K., Preston J.S. Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses. Appl Phys Mater Sci Process 2008; 90(3): 537–543.
- 32. Bentley S.A., Mantle A.L., Aspinwall D.K. The effect of machining on the fatigue strength of a gamma titanium aluminide intermetallic alloy. Intermetallics 1999; 7: 967–969.
- 33. Yilbas B.S. Investigation into drilling speed during laser drilling of metals. J. Opt. Laser Technol. 1988; 20(1): 29–32.
- 34. Hartmann C.A., Fehr T., Brajdic M., Gillner A. Investigation on laser micro ablation of steel using short and ultrashort IR multipulses. J. Laser. Micro. Nanoen. 2007; 2(1): 44–48.
- 35. Ahmed R., Iqbal J., Baig M.A. Effects of laser wavelengths and pulse energy ratio on the emission enhancement in dual pulse LIBS. Laser Phys. Lett. 2015; 12(6): 066102. https://doi.org/10.1088/1612-2011/12/6/066102.
- 36. Wang Q.X., Luo S.Z., Chen Z., Qi H.X., Deng J.N., Hu Z. Drilling of aluminum and copper films with femtosecond double-pulse laser. Opt. Laser. Technol. 2016; 80: 116–124.
- 37. Low D.K., Li L., Corfe A.G. Effects of assist gas on the physical characteristics of spatter during laser percussion drilling of NIMONIC 263 alloy. Appl. Surf. Sci. 2000 Feb 1; 154: 689–695.
- 38. Marimuthu S., Kamara A.M., Sezer H.K., Li L., Ng G.K.L. Numerical investigation on laser stripping of thermal barrier coating. Comput Mater Sci 2014; 88: 131–138.
- 39. Erdogan M., Ibrahim G. The finite element method and applications in engineering using ANSYS®. Springer, 2015.
- 40. Kamara A.M., Marimuthu S., Li L. Finite element modeling of microstructure in laser-deposited multiple layer Inconel 718 parts. Mater. Manuf. Process. 2014; 29(10): 1245–1252.
- 41. EN 485-2:2017+A1:2019 Aluminium and aluminium alloys - Sheet, strip and plate - Part 2: Mechanical properties.
- 42. Tolouei-Rad M., Aamir M. Drilling Technology. IntechOpen, United Kingdom, 2021.
- 43. Laser G3: https://www.lasertechnik.pl/.
- 44. Znakowarka%20laserowa%20galvo%20Fiber%20Laser%20START%20series (access: 5.10.2024).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Poz. 44 w bibligrafii zapis oryginalny z artykułu.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10a6df4a-dd5c-4092-b3d3-f14c77ff5139
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.