PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal energy storage in rock bed - CFD analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article reports on an analysis of the possibility of storing thermal energy in a rock bed. The calculations were made in Ansys CFX 18.0 CFD. The analysis determined the charging time of a packed bed of granite rocks in variable flow conditions for the assumed geometry of the energy storage system. The model was 2-dimensional, consisting of two domains connected by an interface. The packed bed was modelled using a porous model approach. The inlet velocity was varied in the range 0.25-4 m/s. The total charging time was 70 to 1100 min, depending on inlet velocity.
Rocznik
Strony
301--307
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
  • Silesian University of Technology, Poland
  • Silesian University of Technology, Poland
  • Silesian University of Technology, Poland
Bibliografia
  • [1] Wojciech Uchman, Anna Skorek-Osikowska, Michał Jurczyk, and Daniel Wecel. The analysis of dynamic operation of power-to-SNG system with hydrogen generator powered with renewable energy, hydrogen storage and methanation unit. Energy, 213, 2020.
  • [2] Łukasz Bartela. A hybrid energy storage system using compressed air and hydrogen as the energy carrier. Energy, 196, 2020.
  • [3] Janusz Kotowicz, Łukasz Bartela, Daniel Wecel, and Klaudia Dubiel. Hydrogen generator characteristic for storage of renewably-generated energy. Energy, 118: 156-171, 2017.
  • [4] Janusz Kotowicz, Daniel Wecel, and Michał Jurczyk. Analysis of component operation in Power to Gas to Power operation. Applied Energy, 216: 45-59, 2018.
  • [5] Jakub Kupecki, Konrad Motylinski, Stanisław Jagielsk, Michał Wierzbicki, Jack Brouwer, Yevgeniy Naumovich, and Marek Skrzypkiewicz. Energy analysis of a 10 kW-class power-to-gas system based on a solid oxide electrolyzer (SOE). Energy Conversion and Management, 199, 2019.
  • [6] Linda Barelli, Gianni Bidini, Giovanni Cinti, and Jaroslaw Milewski. High temperature electrolysis using Molten Carbonate Electrolyzer. International Journal of Hydrogen Energy, Article in Press, 2020.
  • [7] Jarosław Milewski, Krzysztof Badyda, and Lukasz Szabłowski. Compressed Air Eneergy Storage Systems. Journal of Power Technologies, 96: 245-260, 2016.
  • [8] Marlena Wróbel and Jacek Kalina. Preliminary evaluation of CAES system concept with partial oxidation gas turbine technology. Energy, 183, 2019.
  • [9] Pablo Arce, Marc Medrano, Antoni Gil, Eduard Oró, and Luisa F. Cabeza. Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe. Applied Energy, 88: 2764-2774, 2011.
  • [10] Vivek R. Pawar and Sarvenaz Sobhansarbandi. CFD modeling of a thermal energy storage based heat pipe evacuated tube solar collector. Journal of Energy Storage, 30, 2020.
  • [11] Burcu Koçak, Ana Ines Fernandez, and Halime Paksoy. Review on sensible thermal energy storage for industrial solar applications and sustainability aspects. Solar Energy, 2020.
  • [12] MCarmen Guerrero Delgado, José Sánchez Ramos, Servando Álvarez Domínguez, José AntonioTenorio Ríos, and Luisa F. Cabeza. Building thermal storage technology: Compensating renewable energy fluctuations. Journal of Energy Storage, 27, 2020.
  • [13] Michal Pomianowski, Per Heiselberg, and Yin-ping Zhang. Review of thermal energy storage technologies based on PCM application in buildings. Energy and Buildings, 67: 56-69, 2013.
  • [14] Hussam Jouhara, Alina Żabnieńska Góra, Navid Khordehgah, Darem Ahmad, and Tom Lipinski. Latent thermal energy storage technologies and applications: A review. International Journal of Thermofluids, 5-6, 2020.
  • [15] S. Koohi-Fayegh and M.A. Rosen. A review of energy storage types, applications and recent developments. Journal of Energy Storage, 27, 2020.
  • [16] Pushpendra Kumar Singh Rathore, Shailendra Kumar Shukla, and Naveen Kumar Gupta.Potential of microencapsulated PCM for Energy savings in buildings: A critical review.Sustainable Cities and Society, 53, 2020.
  • [17] Pushpendra Kumar Singh Rathore and Shailendra Kumar Shukla. Potential of macroencapsulated PCM for thermal energy storage in buildings: A comprehensive review. Construction and Building Materials, 225: 723-744, 2019.
  • [18] CFX Manual. 2020.
  • [19] N. Wakao, S. Kaguei, and T. Funazkri. Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: Correlation of nusselt numbers. Chemical Engineering Science, 34: 325-336, 1979.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10a4ad6f-620f-4bd7-92aa-da8c4b205f31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.