Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Thin films were prepared based on cellulose polymer doped with different ratios of natural dye derived from Portulaca grandiflora concentrations. The polymer and natural dye were extracted from eco-friendly materials - the cell walls of millet husks and Portulaca grandiflora, respectively. The spray pyrolysis technique was applied to prepare thin film samples to control the film morphology and reduce the roughness of the surface. Optical microscope and Fourier transform infrared were used to analyse structural, morphological, and functional groups for all samples, respectively. The peak absorbance, extinction coefficient, optical bandgap, Urbach energy, and optical conductivity for the thin films were determined using ultraviolet-visible spectroscopy. The results show an enhancement in the optical characteristics when the natural cellulose is doped with a dye. Doping cellulose with 5% P. grandiflora has led to a considerable reduction in the energy bandgap (to 1.95 eV), compared to the sample doped with 1%.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e146553
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
- Department of Material Science, Polymer Research Centre, University of Basrah, Iraq
autor
- Department of Material Science, Polymer Research Centre, University of Basrah, Iraq
autor
- Department of Material Science, Polymer Research Centre, University of Basrah, Iraq
autor
- Department of Material Science, Polymer Research Centre, University of Basrah, Iraq
Bibliografia
- [1] Shahid, M., Shahid-ul-Islam & Mohammad, F. Recent advance-ments in natural dye applications: a review. J. Clean. Prod. 53, 310-331 (2013). https://doi.org/10.1016/j.jclepro.2013.03.031
- [2] Yusuf, M., Shabbir, M. & Mohammad, F. Natural colorants: histo-rical, processing and sustainable prospects. Nat. Prod. Bioprospect. 7, 123-145 (2017). https://doi.org/10.1007/s13659-017-0119-9
- [3] Patterson, K. A., Grimm, C. M. & Corsi, T. M. Adopting new technologies for supply chain management. Transp. Res. E: Logist. Transp. 39, 95-121 (2003). https://doi.org/10.1016/S1366-5545(02)00041-8
- [4] Sarkis, J., Meade, L. M. & Talluri, S. E‐logistics and the natural environment. Supply Chain Manag. 9, 303-312 (2004). https://doi.org/10.1108/13598540410550055
- [5] Fulekar, M. H. Bioremediation technology for hazardous wastes-recent advances. in Bioremediation Technology (ed. Fulekar, M H.) 135-166 (Springer Netherlands, 2010). https://doi.org/10.1007/978-90-481-3678-0_5
- [6] Kasiri, M. B. & Safapour, S. Natural dyes and antimicrobials for green treatment of textiles. Environ. Chem. Lett. 12, 1-13 (2014). https://doi.org/10.1007/s10311-013-0426-2
- [7] Mortensen, A. Carotenoids and other pigments as natural colorants. Pure Appl. Chem. 78, 1477-1491 (2006). https://doi.org/10.1351/pac200678081477
- [8] Kalra, R., Conlan, X. A. & Goel, M. Fungi as a potential source of pigments: harnessing filamentous fungi. Front. Chem. 8, 369 (2020). https://doi.org/10.3389/fchem.2020.00369
- [9] Zheng, J. & He, L. Surface‐enhanced Raman spectroscopy for the chemical analysis of food. Compr. Rev. Food Sci. Food Saf. 13, 317-328 (2014). https://doi.org/10.1111/1541-4337.12062
- [10] Feret, J.-B. et al. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 112, 3030–3043 (2008). https://doi.org/10.1016/j.rse.2008.02.012
- [11] Balusamy, S. R. et al. Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydr. Polym. 284, 119189 (2022). https://doi.org/10.1016/j.carbpol.2022.119189
- [12] Alaridhee, T. A., Malk, F. H., Hussein, A. A. & Abid, D. S. Enhanced absorption edge of Anchusa-Italica-doped pentacene towards optoelectronic applications. in Current Advances in Materials Applications (eds. Dahham, O & Zulkepli, N. N.) 251-263 (Trans Tech Publications, 2020). https://doi.org/10.4028/www.scientific.net/MSF.1002.251
- [13] Baldwin, A. & Booth, B. W. Biomedical applications of tannic acid. J. Biomater. Appl. 36, 1503-1523 (2022). https://doi.org/10.1177/08853282211058099
- [14] Bouchouit, K. et al. Nonlinear optical properties of selected natural pigments extracted from spinach: Carotenoids. Dyes Pigm. 86, 161-165 (2010). https://doi.org/10.1016/j.dyepig.2009.12.013
- [15] Jacquemoud, S. & Ustin, S. Leaf optical properties. (Cambridge University Press, 2019).
- [16] Anwer, K. et al. Role of N-terminal residues on folding and stability of C-phycoerythrin: simulation and urea-induced denaturation studies. J. Biomol. Struct. Dyn. 33, 121-133 (2015). https://doi.org/10.1080/07391102.2013.855144
- [17] Gonzalez-Ramirez, E. et al. Thermal and pH stability of the B-phyco-erythrin from the red algae Porphyridium cruentum. Food Biophys. 9, 184-192 (2014). https://doi.org/10.1007/s11483-014-9331-x
- [18] Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 110, 6595-6663 (2010). https://doi.org/10.1021/cr900356p
- [19] Grätzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. C 4, 145-153 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1
- [20] Abrahamse, H. & Hamblin, M. R. New photosensitizers for photodynamic therapy. Biochem. J. 473, 347-364 (2016). https://doi.org/10.1042/BJ20150942
- [21] Askim, J. R., Mahmoudi, M. & Suslick, K. S. Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem. Soc. Rev. 42, 8649-8682 (2013). https://doi.org/10.1039/C3CS60179J
- [22] Miller, D. A. Device requirements for optical interconnects to silicon chips. Proc. IEEE Inst. Electr. Electron. Eng. 97, 1166-1185 (2009). https://doi.org/10.1109/JPROC.2009.2014298
- [23] Improta, G., Perrone, A., Russo, M. A. & Triassi, M. Health technology assessment (HTA) of optoelectronic biosensors for oncology by analytic hierarchy process (AHP) and Likert scale. BMC Med. Res. Methodol. 19, 140 (2019). https://doi.org/10.1186/s12874-019-0775-z
- [24] Graetzel, M., Janssen, R. A., Mitzi, D. B. & Sargent, E. H. Materials interface engineering for solution-processed photovoltaics. Nature 488, 304-312 (2012). https://doi.org/10.1038/nature11476
- [25] Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic trihalide perovskites. Nat. Phys. 11, 582-587 (2015). https://doi.org/10.1038/nphys3357
- [26] Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272-1295 (2007). https://doi.org/10.1021/cr050152i
- [27] Kim, M. et al. Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows. ACS Appl. Mater. Interfaces 7, 17904-17909 (2015). https://doi.org/10.1021/acsami.5b04496
- [28] Yu, L., Dean, K. & Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 31, 576-602 (2006). https://doi.org/10.1016/j.progpolymsci.2006.03.002
- [29] Tabasum, S. et al. A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling. Int. J. Biol. Macromol. 122, 969996 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.092
- [30] Obeed, M. T. Study of the optical and electrical properties of melanin pigment. (University of Basrah, 2013).
- [31] Sutherland, R. L. Handbook of Nonlinear Optics. (CRC Press, 2003). https://doi.org/10.1201/9780203912539
- [32] Prima, E. C., Hidayat, N. N., Yuliarto, B. & Dipojono, H. K. A combined spectroscopic and TDDFT study of natural dyes extracted from fruit peels of Citrus reticulata and Musa acuminata for dye-sensitized solar cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 171, 112-125 (2017). https://doi.org/10.1016/j.saa.2016.07.024
- [33] Tauc, J. & Menth, A. States in the gap. J. Non Cryst. Solids 8, 569-585 (1972). https://doi.org/10.1016/0022-3093(72)90194-9
- [34] Reddy, K. M., Manorama, S. V. & Reddy, A. R. Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239-245(2003). https://doi.org/10.1016/S0254-0584(02)00343-7
- [35] Duan, L. et al. Comparative study of light-and thermal-induced degradation for both fullerene and non-fullerene-based organic solar cells. Sustain. Energy Fuels 3, 723-735 (2019). https://doi.org/10.1039/C8SE00567B
- [36] Ugur, E. et al. Life on the Urbach Edge. J. Phys. Chem. Lett. 13, 7702-7711 (2022). https://doi.org/10.1021/acs.jpclett.2c01812
- [37] Palik, E. D. Handbook of Optical Constants of Solids, Third Edition (Academic Press, 1998).
- [38] Wakai, C., Oleinikova, A., Ott, M. & Weingärtner, H. How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy. J. Phys. Chem. B 109, 17028-17030 (2005). https://doi.org/10.1021/jp053946
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10a47a20-7f15-4b43-a059-fd78d1c8f604