PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Residual Power Series Method for the Solution of Time-fractional Schrödinger Equations in One-dimensional Space

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The object of this article is to present the computational solution of the time-fractional Schrödinger equation subject to given constraint condition based on the generalized Taylor series formula in the Caputo sense. The algorithm methodology is based on construct a multiple fractional power series solution in the form of a rabidly convergent series with minimum size of calculations using symbolic computation software. The proposed technique is fully compatible with the complexity of this problem and obtained results are highly encouraging. Efficacious computational experiments are provided to guarantee the procedure and to illustrate the theoretical statements of the present algorithm in order to show its potentiality, generality, and superiority for solving such fractional equation. Graphical results and numerical comparisons are presented and discussed quantitatively to illustrate the solution.
Wydawca
Rocznik
Strony
87--110
Opis fizyczny
Bibliogr. 56 poz., rys.
Twórcy
  • Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan
Bibliografia
  • [1] Laskin N. Fractional Schrödinger equation, Physical Review E, 2002;66(5), Article ID056108, 7 pages. doi:10.1103/PhysRevE.66.056108.
  • [2] Laskin N. Fractional quantum mechanics, Physical Review E, 2000;62:3135-3145. doi:10.1103/PhysRevE.62.3135.
  • [3] Laskin N. Fractional quantum mechanics and Lévy path integrals, Physics Letters A, 2000;268:298-305. doi:10.1016/S0375-9601(00)00201-2.
  • [4] Laskin N. Fractals and quantum mechanics, Chaos, 2000;10:780-790. doi:10.1063/1.1050284.
  • [5] Naber M. Time fractional Schrödinger equation revisited, Advances in Mathematical Physics, 2013;Volume 2013, Article ID 290216, 11 pages. doi:10.1155/2013/290216.
  • [6] Saxena RK , Saxena R, Kalla SL. Solution of space time fractional Schrödinger equation occurring in quantum mechanics, Fractional Calculus & Applied Analysis, 2010;13(2):177-190.
  • [7] Wang S, Xu M. Generalized fractional Schrödinger equation with space-time fractional derivatives, Journal of Mathematical Physics, 2007;48(4), Article ID043502, 10 pages. doi:10.1063/1.2716203.
  • [8] Dong J, Xu M. Space-time fractional Schrödinger equation with time-independent potentials, Journal of Mathematical Analysis and Applications, 2008;344(2):1005-1017. doi:10.1016/j.jmaa.2008.03.061.
  • [9] Guo X, Xu M. Some physical applications of fractional Schrödinger equation, Journal of Mathematical Physics, 2006;47(8), Article ID082104, 9 pages. doi:10.1063/1.2235026.
  • [10] Jiang XY. Time-space fractional Schrödinger like equation with a nonlocal term, European Physical Journal: Special Topics, 2011;193(1):61-70. doi:10.1140/epjst/e2011-01381-7.
  • [11] Abu Arqub O. Series solution of fuzzy differential equations under strongly generalized differentiability, Journal of Advanced Research in Applied Mathematics, 2013;5(1):31-52. doi: 10.5373/jaram.1447.051912.
  • [12] Abu Arqub O, El-Ajou A, Bataineh A, Hashim I. A representation of the exact solution of generalized Lane-Emden equations using a new analytical method, Abstract and Applied Analysis, 2013;Volume 2013, Article ID 378593, 10 pages. doi:10.1155/2013/378593.
  • [13] Abu Arqub O, Abo-Hammour Z, Al-Badarneh R, Momani S. A reliable analytical method for solving higher-order initial value problems, Discrete Dynamics in Nature and Society, 2013;Volume 2013, Article ID 673829, 12 pages, 2013. doi.10.1155/2013/673829.
  • [14] El-Ajou A, Abu Arqub O, Al Zhour Z, Momani S. New results on fractional power series: theories and applications, Entropy, 2013;15(12):5305-5323. doi:10.3390/e15125305.
  • [15] Abu Arqub O, El-Ajou A, Al Zhour Z, Momani S. Multiple solutions of nonlinear boundary value problems of fractional order: a new analytic iterative technique, Entropy, 2014;16(1):471-493. doi:10.3390/e16010471.
  • [16] Abu Arqub O, El-Ajou A, Momani S. Construct and predicts solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations, Journal of Computational Physics, 2015; 293:385-399. doi:10.1016/j.jcp.2014.09.034.
  • [17] El-Ajou A, Abu Arqub O, Momani S. Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm, Journal of Computational Physics, 2015;293:81-95. doi:10.1016/j.jcp.2014.08.004.
  • [18] El-Ajou A, Abu Arqub O, Momani S, Baleanu D, Alsaedi A. A novel expansion iterative method for solving linear partial differential equations of fractional order, Applied Mathematics and Computation, 2015;257:119-133. doi:10.1016/j.amc.2014.12.121.
  • [19] El-Ajou A, Abu Arqub O, Al-Smadi M. A general form of the generalized Taylor’s formula with some applications, Applied Mathematics and Computation, 2015;256:851-859. doi:10.1016/j.amc.2015.01.034.
  • [20] Komashynska I, Al-Smadi M, Abu Arqub O, Momani S. An efficient analytical method for solving singular initial value problems of nonlinear systems, Applied Mathematics and Information Sciences, 2016;10(2):647-656. doi:10.18576/amis/100224.
  • [21] Magin RL, Ingo C, Colon-Perez L, Triplett W, Mareci TH. Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy, Microporous and Mesoporous Materials, 2013;178:39-43. doi:10.1016/j.micromeso.2013.02.054.
  • [22] Cifani S, Jakobsen ER. Entropy solution theory for fractional degenerate convection-diffusion equations, Annales de l’Institut Henri Poincare (C) Non Linear Analysis, 2011;28(3):413-441. doi:10.1016/j.anihpc.2011.02.006.
  • [23] Zhang S, Zhang HQ. Fractional sub-equation method and its applications to nonlinear fractional PDEs, Physics Letters A, 2011;375(7):1069-1073. doi:10.1016/j.physleta.2011.01.029.
  • [24] Mathieu B, Melchior P, Oustaloup A, Ceyral C. Fractional differentiation for edge detection, Signal Processing, 2003;83(11):2421-2432. doi:10.1016/S0165-1684(03)00194-4.
  • [25] Mainardi F, Raberto M, Goreno R, Scalas E. Fractional calculus and continuous-time finance II: the waiting-time distribution, Physica A, 2000;287(3-4):468-481. doi:10.1016/S0378-4371(00)00386-1.
  • [26] He JH. Some applications of nonlinear fractional differential equations and their approximations, Bulletin of Science and Technology, 1999;15(2):86-90. doi:10.1155/2012/346089.
  • [27] Caputo M. Linear models of dissipation whose Q is almost frequency independent: part II, Geophysical Journal International, 1967;13(5):529-539. doi:10.1111/j.1365-246X.1967.tb02303.x.
  • [28] Liu JG, Zeng ZF. Extended generalized hyperbolic-function method and new exact solutions of the generalized Hamiltonians and NNV equations by the symbolic computation, Fundamenta Informaticae, 2014;132(4):501-517. doi:10.3233/FI-2014-1056.
  • [29] Tapaswini S, Chakraverty S. Non-probabilistic solutions of uncertain fractional order diffusion equations, Fundamenta Informaticae, 2014;133(1):19-34. doi:10.3233/FI-2014-1060.
  • [30] Abu Arqub O, Maayah B. Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the AtanganaBaleanu fractional operator, Chaos, Solitons and Fractals, 2018;117:117-124. doi:10.1016/j.chaos.2018.10.007.
  • [31] Abu Arqub O. Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions, Computers & Mathematics with Applications, 2017;73(6):1243-1261. doi:10.1016/j.camwa.2016.11.032.
  • [32] Abu Arqub O. Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm, International Journal of Numerical Methods for Heat & Fluid Flow, 2018;28(4):828-856. doi:10.1108/HFF-07-2016-0278.
  • [33] Abu Arqub O, Al-Smadi M. Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions, Numerical Methods for Partial Differential Equations, 2018;34(5):1577-1597. doi:10.1002/num.22209.
  • [34] Abu Arqub O. Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space, Numerical Methods for Partial Differential Equations, 2018;34(5):1759-1780. doi:10.1002/num.22236.
  • [35] Abu Arqub O, Maayah B. Solutions of Bagley-Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm, Neural Computing & Applications, 2018;29(5):1465-1479. doi:10.1007/s00521-016-2484-4.
  • [36] Abu Arqub O. The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations, Mathematical Methods in the Applied Sciences, 2016;39(15):4549-4562. doi:10.1002/mma.3884.
  • [37] Shawagfeh N, Abu Arqub O, Momani S. Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method, Journal of Computational Analysis and Applications, 2014;16(1):750-762.
  • [38] Abu Arqub O. Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm, Fundamenta Informaticae, 2016;146(3):231-254. doi:10.3233/FI-2016-1384.
  • [39] Ford NJ, Rodrigues MM, Vieira N. A numerical method for the fractional Schrödinger type equation of spatial dimension two, Fractional Calculus and Applied Analysis, 2013;16(2):454-468. doi:10.2478/s13540-013-0028-5.
  • [40] Ashyralyev A, Hicdurmaz B. On the numerical solution of fractional Schrödinger differential equations with the Dirichlet condition, International Journal of Computer Mathematics, 2012;89(13-14):1927-1936. doi:10.1080/00207160.2012.698841.
  • [41] Zhao Y, Cheng DF, Yang XJ. Approximation solutions for local fractional Schrödinger equation in the one-dimensional Cantorian system, Advances in Mathematical Physics, 2013;Volume 2013, Article ID 291386, 5 pages. doi:10.1155/2013/291386.
  • [42] Abu Arqub O, Odibat Z, Al-Smadi M. Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates, Nonlinear Dynamics, 2018;94 (3), 1819-1834. doi:10.1007/s11071-018-4459-8.
  • [43] Kamran A, Hayat U, Yildrim A, Mohyuddin ST. A reliable algorithm for fractional Schrödinger equations, Walailak Journal of Science and Technology, 2013;10(4):405-413. URL http://wjst.wu.ac.th.
  • [44] Bibi A, Kamran A, Hayat U, Mohyuddin ST. New iterative method for time-fractional Schrödinger equations, World Journal of Modelling and Simulation, 2013;9(2):89-95.
  • [45] Zeng ZF, Liu JG, Jiang Y, Nie B. Transformations and soliton solutions for a variable-coefficient nonlinear Schrödinger equation in the dispersion decreasing fiber with symbolic computation, Fundamenta Informaticae, 2016;145(2):207-219. doi:10.3233/FI-2016-1355.
  • [46] Klafter J, Lim SC, Metzler R. Fractional Dynamics in Physics: Recent Advances, World Scientific, Singapore, 2011. URL https://doi.org/10.1142/8087.
  • [47] Tarasov VE. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Berlin, Germany, 2011. doi:10.1007/978-3-642-14003-7.
  • [48] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, Netherlands, 2006.
  • [49] Magin RL. Fractional Calculus in Bioengineering, Begerll House, West Redding, Conn, USA, 2006. ISBN: 978-1-56700-215-7.
  • [50] West B, Bologna M, Grigolini P. Physics of Fractal Operators, Springer, New York, 2003. doi:10.1007/978-0-387-21746-8.
  • [51] Hilfer R. Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. URL https://doi.org/10.1142/3779.
  • [52] Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, UK, 2010. URL https://doi.org/10.1142/p614.
  • [53] Alomari AK, Noorani MSM, Nazar R. Explicit series solutions of some linear and nonlinear Schrodinger equations via the homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation, 2009;14(4):1196-1207. doi:10.1016/j.cnsns.2008.01.008.
  • [54] Wazwaz AM. A study on linear and nonlinear Schrodinger equations by the variational iteration method, Chaos, Solitons and Fractals, 2008;37(4):1136-1142. doi:10.1016/j.chaos.2006.10.009.
  • [55] Sadighi A, Ganji DD. Analytic treatment of linear and nonlinear Schrödinger equations: a study with homotopy-perturbation and Adomian decomposition methods, Physics Letters A, 2008;372(4):465-469. doi:10.1016/j.physleta.2007.07.065.
  • [56] Zhang YN, Xua F, Deng LL. Exact solution for nonlinear Schrödinger equation by He’s frequency formulation, Computers and Mathematics with Applications, 2009;58(11-12):2449-2451. doi:10.1016/j.camwa.2009.03.015.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-109fd0e7-da8f-4286-91e4-71c36f7ada5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.