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Summary

System identification is an important and often complex process in many areas of engineering.
This process is not easy when parameters of the analysed system vary with time. In such cases
classical methods fail to identify parameters properly. The work demonstrated in this paper deals
with time-frequency representations for identification of natural frequencies of time-variant
systems. The method involves the estimation of time-variant transfer functions. A "Crazy
Climbers" algorithm - based on Monte Carlo simulations and Markov chains - is used to overcome
difficulties associated with the method.
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CZASOWO-CZESTOTLIWOSCIOWA ANALIZA SYSTEMOW ZMIENNYCH
W CZASIE

Streszczenie

Identyfikacja parametrow systemoéw mechanicznych jest bardzo waznym i skomplikowanym
procesem. Proces ten jest o wiele bardziej skomplikowany kiedy dotyczy systemow
mechanicznych, ktorych parametry zmieniaja si¢ w czasie. W takim przypadku klasyczne metody
identyfikacji nie sa w stanie poprawnie zidentyfikowa¢ tych parametréw. Artykul zajmuje si¢
wykorzystaniem reprezentacji czasowo-czgstotliwosciowych w celu identyfikacji czgstotliwosci
drgan rezonansowych systemow o zmiennych w czasie parametrach. Jednym z krokéw podczas
estymacji funkcji przejscia jest dzielenie spektrum odpowiedzi przez spektrum wymuszenia, co
czgsto prowadzi do dzielenia przez wartosci bliskie zera, a to prowadzi do nieskonczonych (lub
niezdefiniowanych) wartosci. W celu ominigcia tego problemu zastosowano probabilistyczna
metodg ,,CrazyClimbers”, oparta na symulacjach Monte Carlo oraz tancuchach Markova.

Stowa kluczowe: identyfikacja systemow, analiza czasowo-czgstotliwosciowa, grzbiety funkcji,
"CrazyClimbers"

INTORDUCTION

mathematical sense. Nevertheless the method is a

Estimation of instantaneous frequency of mono-
component signals x(z) can be obtained from the
instantaneous phase which is argument of complex
function of Hilbert transform of given signal [1]. It
is well known that that the Hilbert transform can be
calculated from the Fourier transform by a proper
manipulation of spectral components. When multi-
component signals are used some additional signal
processing is required to extract the instantaneous
frequency. This results from the simple fact, that
every multi-component signal can be decomposed
into a series of mono-component signals, e.g. by
means filtering or the Empirical Mode
Decomposition (EMD). The latter leads to a number
of the so-called Intrinsic Mode Functions (IMFs).
Instantaneous frequencies can be extracted from
each of these IMFs in same manner as in case of
mono-component signals. The entire process is often
called the Hilbert-Huang Transform (HHT) despite
the fact that the EMD is s not a transform in a

powerful tool in signal processing and has been used
to solve many engineering problems [2].

An alternative approach for estimation of
instantaneous frequencies can be proposed when
ridges of time-frequency representations are
analysed. Intuitively, ridges are curves that
concentrate signal's energy. Methods concerning
identification of instantaneous frequency with the
use of ridges are relatively well established in the
case of mono-component signals. The simplest
approach for ridge identification is based on
calculation of local time-frequency maxima [3]. It is
well known that local maxima (or in fact ridge
values) correspond to instantaneous frequency of
signal. This process can be written as

|TF(t, w,)| = |max,, TF(t, )] (1

where TF denotes time-frequency transformation or
distribution, ¢ denotes time variable, w is frequency
variable and max, is maximal value along
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frequency variable. It is important to note that the
above definition is limited to mono-component
signals only. The ridge-based method can be also
applied to  multi-component signals  when
appropriate  time-frequency filtering is used.
However this is not an easy task particularly when
noisy data - often associated with real measurements
- are used. In such cases various optimization
algorithms are required to obtain ridges.

Various approaches can be used for identification
of time-variant systems. Parametric methods are
often used for estimation of FRFs for time-variant
systems. These methods are based on parametric
models. The Auto-Regressive (AR), Auto-
Regressive  Moving-Average (ARMA), Auto-
Regressive Moving-Average with eXogenous inputs
(ARMAX) models and many other approaches can
be used for LTI systems [4]. Time-variant systems
are often analysed using similar but modified
approaches. There exist a number of time-dependent
parametric methods, starting from simple models
such as the Time-dependent AR (TAR) and Time-
dependent ARMA (TARMA) to more complex and
computationally demanding models such as the
Recursive Maximum Likelihood estimated TARMA
(RML-TARMA), Smoothness Priors TARMA (SP-
TARMA), Functional Series TARMA (FS-TARMA)
and other variations of these models are discussed in
[S1-8].

The objective of the paper is to present
alternative method to parametric methods. This
method will be based on non-parametric
transformations such as Short Time Fourier
Transform (STFT), in combination with Crazy
Climbers algorithm. However, other time-frequency
or even time-scale representations can be also used,
as shown in [9], [10].

The structure of the paper is as follows. For the
sake of completeness Section 2 briefly describes
input-output analysis of classical time-invariant
systems. The Time-Variant Frequency Response
Functions (TVFRF) is presented in Section 3. The
concept of ridges is presented in Section 4. The
optimization algorithm used for ridge extraction is
shown in Section 5. Simulated examples and results
are given in Section 6. Finally the paper is
concluded in Section 7.

2. INPUT-OUTPUT ANALYSIS OF SYSTEMS

Different methods can be used for signals. The
two most common approaches utilise time responses
and power spectra. Analysis of time response leads
to information on signal amplitude and localisation
of events in time. The simplicity is the major
advantage of this approach. Relatively very little
signal post-processing is required to obtain basic
information. In contrast, analysis in the frequency
domain, based for example on power spectra,
provides information about frequency content of the

analysed signal. The well-known Fourier transform
defined as:

X(w) = FIx(®] = — [[7x(@e7®dt  (2)

can be used to obtain power spectra. In modal
analysis the FRF defined as the frequency-domain
ratio between the output (or response) Y(w) and
input (or excitation) X(®), i.e.

_ Y _ Fly(]
H(®) =3 = fxon @)

allows for modal parameters (natural frequency,
damping and mode shapes) to be estimated. Once
the FRF is given the response can be obtained in the
time domain using the inverse Fourier transform as

y(© == [17 V() dw (4)

Another way of representing dynamic response
of mechanical systems to given excitations is the
well-known impulse response function defined as

h(o) = i J57 H(w)etdw (5)

It is clear that the response of the analysed
system can be obtained from the impulse response
function using the convolution theorem as

y(®) = [77h(s) x(t — s)ds (6)

The major disadvantage of the classical method
described in this section is the fact that the Fourier
Transform is capable to analyse properly only time-
invariant signals. The application of this approach to
time-variant systems may lead to incorrect FRFs and
identified physical/modal parameters. This is the
reason why other approaches are required.

3. TIME-VARIANT FREQUENCY RESPONSE
FUNCTION

The classical FRF can be extended intuitively for
time-variant systems to provide time-frequency
localisation capability. When the analysis is limited
to small periods of time that exhibit time-invariant
behaviour, time-variations are negligibly small and
the Time-Variant Frequency Response Function
(TVFRF) can be defined as

_ Y(tw) _ TFly(v)]
H(t w) = X(tw)  TFx®] ™

where TF denotes time-frequency transformation or
distribution. More information about this ratio can
be found in [9]-[11]. For simplicity, the work
presented in this paper utilises the STFT to obtain
input and output time-frequency spectra needed to
calculate the TVFRF in Equation (7).
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Equation (7) is relatively simple often not easy to
use in practice. For values of TF[x(t)] that are close
to zero, the H(t, w)tends to infinity. This makes it
very difficult to interpret. That is why additional
post-processing is required to avoid the above
problem.

4. RIDGES OF FUNCTIONS

For the sake of completeness concept of
canonical representation of real signals is recalled in
this section for better understating related to
functional ridges. It is well known that any real
signal can be represented in terms of its
instantaneous amplitude 4 and phase¢@

x(t) = A(t) cos(@(V)) (8)

Instantaneous frequency can be easily derived
from instantaneous phase:

d
w(t) = - 940 ©)

More information on both instantaneous signal
characteristics be found in [12], [13]. Various
methods can be used to obtain the instantaneous
amplitude and frequency of signals. The most
commonly used algorithm is based on the Hilbert
transform. These characteristics can be also obtained
from the time-frequency and  time-scale
representation. The major areas where the signal
energy is concentrated need to be localized. These
areas form a smooth curve that joins local maxima
of the transform. The curve is often called a ridge of
the transform. Ridges can be then used to obtain the
instantaneous frequency and amplitude. The former
is obtained when ridge localization is performed.
The process of combining single ridges into
sequence is called chaining. The latter is achieved
when the amplitude corresponding to ridge area is
analyzed.

When Equation (7) is used the entire concept of
ridges can be utilised in system analysis. Then
instead of instantancous frequency, natural
frequency will be considered.

5. RIDGE EXTRACTION PROCEDURE
5.1 Crazy Climbers Algorithm

The time-variant FRF defined by Equation (7)
does not involve any data averaging in the time
domain. When additionally the data analysed are
noisy and close vibration modes are involved, the
process of ridge extraction and ridge chaining can
lead to significant numerical errors and difficult
interpretation. Various post-processing algorithms
can be applied to avoid such difficulties. The so-
called "Crazy Climbers" algorithm is one of the
possible methods that can be used in practice. This

method is based on the Monte Carlo Markov Chain
(MCMC) simulations. The main idea of the method
is to use the TVFRF to generate a random walk on
the time-frequency plane, in such way that the
random walker is attracted by the ridges of the hills.
In addition, the random walk is done at a given
“temperature” which changes with time. The
temperature is gradually decreased in the process, as
in the simulated annealing algorithm. However,
contrary to the simulated annealing procedure, the
motion of the walker is unrestricted in one direction
and walker is never stuck on the ridge. Thanks to the
temperature schedule, each climber is expected to
spend most of his time walking along one or another
ridge involved. Therefore there are a number of
walkers instead of just one and the entire procedure
is suitable for multi-degree-of-freedom (MDOF)
systems. Thanks to these random walks, one can
create the so-called occupation measures. These
occupation measures are created for each point on
the time-frequency plane. They represent numbers of
time that certain points have been visited by walkers.
The occupation measures are expected to have
higher values near ridges as they are more attractive
for climbers. The "Crazy Climbers" algorithm has a
great advantage in terms of possible mode separation
when closed vibration modes are involved. More
detailed description of the entire algorithm can be
found in [14], [15]. When occupation measures are
created the results are chained to obtain skeletons.
The chaining procedure consists of two major steps.
Firstly, thresholding of occupation measures is
performed. Values below the pre-defined fixed value
7 are forced to zero, i.e.

— p(t' mn)ﬁ if p(t, U)n) >T
p(ton) = { 0, otherwise (10)

where p is the occupation measure obtained by
means of the "Crazy Climbers" algorithm. The
second step considers chaining the relevant ridges
into a number of skeletons in such way that maximal
points are connected together when moving along
time direction. The entire procedure allows for ridge
extraction that is essential for system identification.

5.2 Ridge Optimization

Extracted and appropriately chained ridges are
often non-smooth and have no physical meaning
when natural frequencies are analysed. This is due to
noise and/or numerical errors. Ridge optimization
needs to be performed to obtain the best ridge
solution. In order to achieve this, an assumption
concerning the expected skeleton have to be made
and some additional physical information have to be
taken into account. The first step considered arises
from the previously made definition of ridges.
Ridges can be found from the areas of concentration
of energy, i.e.
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&1 (0n(0) = — [H(t 0,(D)dt (11)

where the integral in the above equation defines the
sum of TVFRF values along which the skeleton
passes. One should note that this integral is
multiplied by minus one. This is required by the
optimization algorithm used; optimization concerns
minimization of penalty function.

Since this method concerns real mechanical
systems, smoothness of the ridge is expected.
Mathematically this requires minimizing the second
penalty function given in the form

£2(wn(®) = A fop O 2dt + p f|on®[*dt  (12)

where A and p are arbitrary parameters defining
weights of the relevant integrals. Minimization of
these integrals leads to more smooth results. The
penalty functions - given by Equations (11) and (12)
- can be combined to define one penalty function,
ie.

e(wn(®) = & (0, (D) + &2 (0, (D) (13)

that was used in the entire optimization process to
extract smooth ridges. The optimization process can
utilise genetic algorithms, as demonstrated in [16].

6. NUMERICAL SIMULATIONS

This section demonstrates the capability of the
system identification procedure. The focus is on the
"Crazy Climbers". Numerical simulations are used
to define a simple MDOF system. The 2-DOF
damped mass-spring lumped parameter system,
illustrated in Figure 1, is simulated using the
MATLAB/Simulink computation platform. The
sampling frequency was equal to 1 kHz in these
numerical simulations.

The system analysed is heavily damped and
involves a time-variant mass element; the mass
decreased with time. As a result, one of the natural
frequencies was expected to vary in time.

Cl C2

K1 M(t) Kz m

LA |

Figure 1. 2-DOF system with time-variant mass

Excitation signal in time and frequency domain

Frequency [Hz]

Time [s]
Figure 2. Time-frequency distribution for the
Gaussian white noise excitation signal

The Gaussian white noise was used as an input
signal to provide a broadband excitation. Figure 2
gives the time-frequency distribution for the
excitation signal.

Firstly, the results obtained from numerical
simulations were subjected to the classical analysis.
The FRF for the system analysed is shown in Figure
3.

Frequency Response Function

Amplitude [-]

n_nj- | M J]MAJJ

0 50 100 150 200
Frequency [Hz]

Figure 3. Classical FRF obtained with Fourier
transform

The first natural frequency of 40 Hz is clearly
exhibited by the FRF function. The second natural
frequency is not so obvious due to the time-variant
behaviour of the system. Clearly, the classical FRF
analysis is not suitable for time-variant systems
since natural frequencies are not properly identified.
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Time-Freugnecy Response Function
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Figure 4. Time-variant FRF for the system shown in
Figure 1

The excitation and response data were used to
calculate the TVFRF from Equation (7). The result -
presented in Figure 4 - is not easy for interpretation.
That is why additional post-processing was
performed. The "Crazy Climbers:" algorithm -
described in Section 5.1 - was used to extract
TVFRF ridges. The results of this extraction are
shown in Figure 5. Here two vibration modes -
represented by two white curves indicating varying
natural frequencies - can be clearly identified. The
natural frequency of the second mode involved
increases with time, as expected. However, both
natural frequencies extracted are very bumpy, due to
the calculation procedure involved.

The optimization procedure - described in
Section 5.2 - was performed to obtain smooth
curves. The results are shown in Figure 5 as two red
curves imposed on the white noisy characteristics.

Result of Genetic Algoritm Optimization
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Figure 5. Ridges for the time-variant FRF shown in
Figure 4

This clearly shows that the optimization
procedure made the relevant ridges smoother and
much easier for interpretation. The first natural
frequency was estimated between 39 and 41 Hz,
whereas the second natural frequency was found to
vary between 80 to 140. The results in Figure 5 can
be compared with Figure 6 where the so-called
"frozen" spectra were used to obtain the natural
frequencies of the analysed system. The dynamic
behaviour of the system was frozen in time and the
classical FRF was obtained. The results in Figure 6
shows that the time-variant behaviour exhibited by
the TVFRF - shown in Figure 5 - is revealed
properly. Thus the method can be used for
identification of time-variant systems.

Ideal Time-Frequency Response Function
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Figure 6. TVFRF obtained with frozen dynamical
properties
7. CONCLUSIONS

The TVFRF based on the STFT was used for
identification of time-variant systems. The "Crazy
Climbers" algorithm together with the skeleton
optimization schemes was applied to reveal varying
natural frequencies of the simple 2-DOF time-
variant system. The results show that the method can
be used to reveal time-variant behaviour of the
system and to extract its varying natural frequencies.
It is important to note that the identification
performance of the method have been tested using
only one simple simulated example and one
identified modal parameter. Future work should
involve identification of the remaining modal
parameters, i.e. mode shapes and damping. Also,
more complex simulated and experimental systems
should be investigated.
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