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Summary 

System identification is an important and often complex process in many areas of engineering. 

This process is not easy when parameters of the analysed system vary with time. In such cases 

classical methods fail to identify parameters properly. The work demonstrated in this paper deals 

with time-frequency representations for identification of natural frequencies of time-variant 

systems. The method involves the estimation of time-variant transfer functions. A "Crazy 

Climbers" algorithm - based on Monte Carlo simulations and Markov chains - is used to overcome 

difficulties associated with the method.  
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CZASOWO-CZĘSTOTLIWOŚCIOWA ANALIZA SYSTEMÓW ZMIENNYCH  
W CZASIE 

 

Streszczenie 

Identyfikacja parametrów systemów mechanicznych jest bardzo ważnym i skomplikowanym 
procesem. Proces ten jest o wiele bardziej skomplikowany kiedy dotyczy systemów 
mechanicznych, których parametry zmieniają się w czasie. W takim przypadku klasyczne metody 

identyfikacji nie są w stanie poprawnie zidentyfikować tych parametrów. Artykuł zajmuje się 
wykorzystaniem reprezentacji czasowo-częstotliwościowych w celu identyfikacji częstotliwości 
drgań rezonansowych systemów o zmiennych w czasie parametrach. Jednym z kroków podczas 
estymacji funkcji przejścia jest dzielenie spektrum odpowiedzi przez spektrum wymuszenia, co 
często prowadzi do dzielenia przez wartości bliskie zera, a to prowadzi do nieskończonych (lub 
niezdefiniowanych) wartości. W celu ominięcia tego problemu zastosowano probabilistyczną 
metodę „CrazyClimbers”, opartą na symulacjach Monte Carlo oraz łańcuchach Markova. 

 
Słowa kluczowe: identyfikacja systemów, analiza czasowo-częstotliwościowa, grzbiety funkcji, 

"CrazyClimbers"  

 

1. INTORDUCTION 

 

Estimation of instantaneous frequency of mono-

component signals x(t) can be obtained from the 

instantaneous phase which is argument of complex 

function of Hilbert transform of given signal [1]. It 

is well known that that the Hilbert transform can be 

calculated from the Fourier transform by a proper 

manipulation of spectral components. When multi-

component signals are used some additional signal 

processing is required to extract the instantaneous 

frequency. This results from the simple fact, that 

every multi-component signal can be decomposed 

into a series of mono-component signals, e.g. by 

means filtering or the Empirical Mode 

Decomposition (EMD). The latter leads to a number 

of the so-called Intrinsic Mode Functions (IMFs). 

Instantaneous frequencies can be extracted from 

each of these IMFs in same manner as in case of 

mono-component signals. The entire process is often 

called the Hilbert-Huang Transform (HHT) despite 

the fact that the EMD is s not a transform in a 

mathematical sense. Nevertheless the method is a 

powerful tool in signal processing and has been used 

to solve many engineering problems [2].  

An alternative approach for estimation of 

instantaneous frequencies can be proposed when 

ridges of time-frequency representations are 

analysed. Intuitively, ridges are curves that 

concentrate signal's energy. Methods concerning 

identification of instantaneous frequency with the 

use of ridges are relatively well established in the 

case of mono-component signals. The simplest 

approach for ridge identification is based on 

calculation of local time-frequency maxima [3]. It is 

well known that local maxima (or in fact ridge 

values) correspond to instantaneous frequency of 

signal. This process can be written as 

 

  (1) 

 

where TF denotes time-frequency transformation or 

distribution, t denotes time variable,  is frequency 

variable and  is maximal value along 
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frequency variable. It is important to note that the 

above definition is limited to mono-component 

signals only. The ridge-based method can be also 

applied to multi-component signals when 

appropriate time-frequency filtering is used. 

However this is not an easy task particularly when 

noisy data - often associated with real measurements 

- are used. In such cases various optimization 

algorithms are required to obtain ridges.  

Various approaches can be used for identification 

of time-variant systems. Parametric methods are 

often used for estimation of FRFs for time-variant 

systems. These methods are based on parametric 

models. The Auto-Regressive (AR), Auto-

Regressive Moving-Average (ARMA), Auto-

Regressive Moving-Average with eXogenous inputs 

(ARMAX) models and many other approaches can 

be used for LTI systems [4]. Time-variant systems 

are often analysed using similar but modified 

approaches. There exist a number of time-dependent 

parametric methods, starting from simple models 

such as the Time-dependent AR (TAR) and Time-

dependent ARMA (TARMA) to more complex and 

computationally demanding models such as the 

Recursive Maximum Likelihood estimated TARMA 

(RML-TARMA), Smoothness Priors TARMA (SP-

TARMA), Functional Series TARMA (FS-TARMA) 

and other variations of these models are discussed in 

[5]–[8]. 

The objective of the paper is to present 

alternative method to parametric methods. This 

method will be based on non-parametric 

transformations such as Short Time Fourier 

Transform (STFT), in combination with Crazy 

Climbers algorithm. However, other time-frequency 

or even time-scale representations can be also used, 

as shown in [9], [10]. 

The structure of the paper is as follows. For the 

sake of completeness Section 2 briefly describes 

input-output analysis of classical time-invariant 

systems. The Time-Variant Frequency Response 

Functions (TVFRF) is presented in Section 3. The 

concept of ridges is presented in Section 4. The 

optimization algorithm used for ridge extraction is 

shown in Section 5. Simulated examples and results 

are given in Section 6. Finally the paper is 

concluded in Section 7. 

 

2. INPUT-OUTPUT ANALYSIS OF SYSTEMS 

 

Different methods can be used for signals. The 

two most common approaches utilise time responses 

and power spectra. Analysis of time response leads 

to information on signal amplitude and localisation 

of events in time. The simplicity is the major 

advantage of this approach. Relatively very little 

signal post-processing is required to obtain basic 

information. In contrast, analysis in the frequency 

domain, based for example on power spectra, 

provides information about frequency content of the 

analysed signal. The well-known Fourier transform 

defined as: 

 

  (2) 

 

can be used to obtain power spectra. In modal 

analysis the FRF defined as the frequency-domain 

ratio between the output (or response) Y(ω) and 

input (or excitation) X(ω), i.e. 

 

  (3) 

 

allows for modal parameters (natural frequency, 

damping and mode shapes) to be estimated. Once 

the FRF is given the response can be obtained in the 

time domain using the inverse Fourier transform as 

 

  (4) 

 

Another way of representing dynamic response 

of mechanical systems to given excitations is the 

well-known impulse response function defined as 

 

  (5) 

 

It is clear that the response of the analysed 

system can be obtained from the impulse response 

function using the convolution theorem as 

 

  (6) 

 

The major disadvantage of the classical method 

described in this section is the fact that the Fourier 

Transform is capable to analyse properly only time-

invariant signals. The application of this approach to 

time-variant systems may lead to incorrect FRFs and 

identified physical/modal parameters. This is the 

reason why other approaches are required. 

 

3. TIME-VARIANT FREQUENCY RESPONSE 

FUNCTION 

 

The classical FRF can be extended intuitively for 

time-variant systems to provide time-frequency 

localisation capability. When the analysis is limited 

to small periods of time that exhibit time-invariant 

behaviour, time-variations are negligibly small and 

the Time-Variant Frequency Response Function 

(TVFRF) can be defined as 

 

  (7) 

 

where  denotes time-frequency transformation or 

distribution. More information about this ratio can 

be found in [9]–[11]. For simplicity, the work 

presented in this paper utilises the STFT to obtain 

input and output time-frequency spectra needed to 

calculate the TVFRF in Equation (7).  
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Equation (7) is relatively simple often not easy to 

use in practice. For values of  that are close 

to zero, the tends to infinity. This makes it 

very difficult to interpret. That is why additional 

post-processing is required to avoid the above 

problem.  

 

4. RIDGES OF FUNCTIONS 

 

For the sake of completeness concept of 

canonical representation of real signals is recalled in 

this section for better understating related to 

functional ridges. It is well known that any real 

signal can be represented in terms of its 

instantaneous amplitude A and phase  

 

  (8) 

 

 Instantaneous frequency can be easily derived 

from instantaneous phase: 

 

  (9) 

 

More information on both instantaneous signal 

characteristics be found in [12], [13]. Various 

methods can be used to obtain the instantaneous 

amplitude and frequency of signals. The most 

commonly used algorithm is based on the Hilbert 

transform. These characteristics can be also obtained 

from the time-frequency and time-scale 

representation. The major areas where the signal 

energy is concentrated need to be localized. These 

areas form a smooth curve that joins local maxima 

of the transform. The curve is often called a ridge of 

the transform. Ridges can be then used to obtain the 

instantaneous frequency and amplitude. The former 

is obtained when ridge localization is performed. 

The process of combining single ridges into 

sequence is called chaining. The latter is achieved 

when the amplitude corresponding to ridge area is 

analyzed.  

When Equation (7) is used the entire concept of 

ridges can be utilised in system analysis. Then 

instead of instantaneous frequency, natural 

frequency will be considered.  

 

5. RIDGE EXTRACTION PROCEDURE  

 

5.1 Crazy Climbers Algorithm  

 

The time-variant FRF defined by Equation (7) 

does not involve any data averaging in the time 

domain. When additionally the data analysed are 

noisy and close vibration modes are involved, the 

process of ridge extraction and ridge chaining can 

lead to significant numerical errors and difficult 

interpretation. Various post-processing algorithms 

can be applied to avoid such difficulties. The so-

called "Crazy Climbers" algorithm is one of the 

possible methods that can be used in practice. This 

method is based on the Monte Carlo Markov Chain 

(MCMC) simulations. The main idea of the method 

is to use the TVFRF to generate a random walk on 

the time-frequency plane, in such way that the 

random walker is attracted by the ridges of the hills. 

In addition, the random walk is done at a given 

“temperature” which changes with time. The 
temperature is gradually decreased in the process, as 

in the simulated annealing algorithm. However, 

contrary to the simulated annealing procedure, the 

motion of the walker is unrestricted in one direction 

and walker is never stuck on the ridge. Thanks to the 

temperature schedule, each climber is expected to 

spend most of his time walking along one or another 

ridge involved. Therefore there are a number of 

walkers instead of just one and the entire procedure 

is suitable for multi-degree-of-freedom (MDOF) 

systems. Thanks to these random walks, one can 

create the so-called occupation measures. These 

occupation measures are created for each point on 

the time-frequency plane. They represent numbers of 

time that certain points have been visited by walkers. 

The occupation measures are expected to have 

higher values near ridges as they are more attractive 

for climbers. The "Crazy Climbers" algorithm has a 

great advantage in terms of possible mode separation 

when closed vibration modes are involved. More 

detailed description of the entire algorithm can be 

found in [14], [15]. When occupation measures are 

created the results are chained to obtain skeletons. 

The chaining procedure consists of two major steps. 

Firstly, thresholding of occupation measures is 

performed. Values below the pre-defined fixed value 

τ are forced to zero, i.e. 

 

  (10) 

 

where  is the occupation measure obtained by 

means of the "Crazy Climbers" algorithm. The 

second step considers chaining the relevant ridges 

into a number of skeletons in such way that maximal 

points are connected together when moving along 

time direction. The entire procedure allows for ridge 

extraction that is essential for system identification.  

 

5.2 Ridge Optimization  

 

Extracted and appropriately chained ridges are 

often non-smooth and have no physical meaning 

when natural frequencies are analysed. This is due to 

noise and/or numerical errors. Ridge optimization 

needs to be performed to obtain the best ridge 

solution. In order to achieve this, an assumption 

concerning the expected skeleton have to be made 

and some additional physical information have to be 

taken into account. The first step considered arises 

from the previously made definition of ridges. 

Ridges can be found from the areas of concentration 

of energy, i.e. 
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  (11) 

 

where the integral in the above equation defines the 

sum of TVFRF values along which the skeleton 

passes. One should note that this integral is 

multiplied by minus one. This is required by the 

optimization algorithm used; optimization concerns 

minimization of penalty function. 

Since this method concerns real mechanical 

systems, smoothness of the ridge is expected. 

Mathematically this requires minimizing the second 

penalty function given in the form 

 

 (12) 

 

where  and  are arbitrary parameters defining 

weights of the relevant integrals. Minimization of 

these integrals leads to more smooth results. The 

penalty functions - given by Equations (11) and (12) 

- can be combined to define one penalty function, 

i.e.  

 

 (13) 

 

that was used in the entire optimization process to 

extract smooth ridges. The optimization process can 

utilise genetic algorithms, as demonstrated in [16]. 

 

6. NUMERICAL SIMULATIONS 

 

This section demonstrates the capability of the 

system identification procedure. The focus is on the 

"Crazy Climbers". Numerical simulations are used 

to define a simple MDOF system. The 2-DOF 

damped mass-spring lumped parameter system, 

illustrated in Figure 1, is simulated using the 

MATLAB/Simulink computation platform. The 

sampling frequency was equal to 1 kHz in these 

numerical simulations. 

The system analysed is heavily damped and 

involves a time-variant mass element; the mass 

decreased with time. As a result, one of the natural 

frequencies was expected to vary in time.  

 

 
Figure 1. 2-DOF system with time-variant mass 

 

 

 
Figure 2. Time-frequency distribution for the 

Gaussian white noise excitation signal 

 

The Gaussian white noise was used as an input 

signal to provide a broadband excitation. Figure 2 

gives the time-frequency distribution for the 

excitation signal.  

 

Firstly, the results obtained from numerical 

simulations were subjected to the classical analysis. 

The FRF for the system analysed is shown in Figure 

3. 

 

 
Figure 3. Classical FRF obtained with Fourier 

transform 

 

The first natural frequency of 40 Hz is clearly 

exhibited by the FRF function. The second natural 

frequency is not so obvious due to the time-variant 

behaviour of the system. Clearly, the classical FRF 

analysis is not suitable for time-variant systems 

since natural frequencies are not properly identified.  
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Figure 4. Time-variant FRF for the system shown in 

Figure 1 

 

The excitation and response data were used to 

calculate the TVFRF from Equation (7). The result - 

presented in Figure 4 - is not easy for interpretation. 

That is why additional post-processing was 

performed. The "Crazy Climbers:" algorithm - 

described in Section 5.1 - was used to extract 

TVFRF ridges. The results of this extraction are 

shown in Figure 5. Here two vibration modes - 

represented by two white curves indicating varying 

natural frequencies - can be clearly identified. The 

natural frequency of the second mode involved 

increases with time, as expected. However, both 

natural frequencies extracted are very bumpy, due to 

the calculation procedure involved.  

The optimization procedure - described in 

Section 5.2 - was performed to obtain smooth 

curves. The results are shown in Figure 5 as two red 

curves imposed on the white noisy characteristics.  

 

 
Figure 5. Ridges for the time-variant FRF shown in 

Figure 4 

 

This clearly shows that the optimization 

procedure made the relevant ridges smoother and 

much easier for interpretation. The first natural 

frequency was estimated between 39 and 41 Hz, 

whereas the second natural frequency was found to 

vary between 80 to 140. The results in Figure 5 can 

be compared with Figure 6 where the so-called 

"frozen" spectra were used to obtain the natural 

frequencies of the analysed system. The dynamic 

behaviour of the system was frozen in time and the 

classical FRF was obtained. The results in Figure 6 

shows that the time-variant behaviour exhibited by 

the TVFRF - shown in Figure 5 - is revealed 

properly. Thus the method can be used for 

identification of time-variant systems. 

 

 
Figure 6. TVFRF obtained with frozen dynamical 

properties 

 

7. CONCLUSIONS 

 

The TVFRF based on the STFT was used for 

identification of time-variant systems. The "Crazy 

Climbers" algorithm together with the skeleton 

optimization schemes was applied to reveal varying 

natural frequencies of the simple 2-DOF time-

variant system. The results show that the method can 

be used to reveal time-variant behaviour of the 

system and to extract its varying natural frequencies. 

It is important to note that the identification 

performance of the method have been tested using 

only one simple simulated example and one 

identified modal parameter. Future work should 

involve identification of the remaining modal 

parameters, i.e. mode shapes and damping. Also, 

more complex simulated and experimental systems 

should be investigated. 
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