PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Similarity Solution for Phase Change of Dilute Binary Isomorphous Alloy with Density Variation during Phase Change

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A similarity solution for conduction dominated solidification of a dilute binary isomorphous alloy has been developed. The effect solidification due to density change during phase transformation has been highlighted and investigated in detail. The governing equations for solid, liquid and mushy phase has been proposed, taking into account the effect of shrinkage or expansion due to density change during phase change. The thermo-physical properties (thermal conductivity and specific heat), equilibrium temperature and phase fraction are evaluated within the mushy zone using averaging technique. The effect of equilibrium and non-equilibrium solidification is investigated using Lever and Scheil’s rule models respectively. In addition, the effect of boundary and initial temperature on solidification behavior of the alloy is also addressed. It has been observed that the interface (liquidus and solidus) moves faster with increase in density ratio and decrease in boundary and initial temperature. No major changes in temperature distribution and interface position has been observed with variation partition coefficient and microscale behavior model (Lever rule and Scheil’s rule).
Twórcy
autor
  • School of Mechanical Sciences, IIT Bhubaneswar, Bhubaneswar, 751012, India
  • Chandigarh University, University Centre of Research & Development, Mohali-140413, Punjab
  • School of Mechanical Sciences, IIT Bhubaneswar, Bhubaneswar, 751012, India
  • School of Mechanical Sciences, IIT Bhubaneswar, Bhubaneswar, 751012, India
Bibliografia
  • [1] M.N. Ozisik, John Wiley & Sons 2, 1-356 (1993).
  • [2] V. Alexiades, A.D. Solomon, Taylor & Francs 2, 1-34 (1993).
  • [3] M. Turkyilmazoglu, Int. J. of Thermal. Sci. 126, 67-73 (2018). DOI: https://doi.org/10.1016/j.ijthermalsci.2017.12.019
  • [4] A.N. Ceretani, D.A. Tarzia, Comput. and Appl. Math. 37 (2), 2201-2217 (2018). DOI: https://doi.org/10.1007/s40314-017-0442-0
  • [5] L. Barannyk, S.D. Williams, O.I. Ogidan, J.C. Crepeau, A. Sakhnov, Heat Transfer Summer Conference, ASME 59315, V001T10A014, (2019). DOI: https://doi.org/10.1115/HT2019-3703
  • [6] M. Parhizi, A. Jain, J. of Heat Trans. 141 (2), (2019). DOI: https://doi.org/10.1115/1.4041956
  • [7] S.L. Tariq, H.M. Ali, M.A. Akram, M.M. Janjua, M. Ahmadlouydarab, Appl. Therm. Engg. 176, 115305, (2020). DOI: https://doi.org/10.1016/j.applthermaleng.2020.115305
  • [8] A. Agarwal, R.M Sarviya, Engg. Sci. and Tech., An Int. J. 19 (1), 619-631 (2016). DOI: https://doi.org/10.1016/j.jestch.2015.09.014
  • [9] S. Chakraborty, P. Dutta, Metall. and Mat. Trans. 32 (3), 562 (2001). DOI: https://doi.org/10.1007/s11663-001-0042-6
  • [10] E.S. Jafar, M. Eslamian, M.Z. Saghir, Engg. Sci. and Tech., and Int. J. 19 (1), 511-517 (2016).
  • [11] V.R. Voller, A.D. Brent, C. Prakash, Int. J. of Heat and Mass Trans. 32 (9), 1719-1731 (1989).
  • [12] V.R. Voller, A.D. Brent, C. Prakash, Appl. Math. Modell. 14 (6), 320-326 (1990).
  • [13] V.R. Voller, Int. J. of Heat and Mass Trans. 51 (3), 823-834 (2008).
  • [14] J.D. Chung, J.S. Lee, S.T. Ro, H. Yoo, Int. J. of Heat and Mass Trans. 42 (2), 373-377 (1999).
  • [15] S. Chakraborty, P. Dutta, Appl. Math. Modell. 26 (4), 545-561 (2002).
  • [16] V.R. Voller, Int. J. of Heat and Mass Trans. 49 (11), 1981-19 (2006).
  • [17] A. Jakhar, A. Bhattacharya, P. Rath, S.K. Mahapatra, Int. J. of Heat and Mass Trans. 127, 1114-1127 (2018).
  • [18] M. Assuncao, M. Vynnycky, S.L Mitchel, Eur. J. Appl. Math. (2020). DOI: https://doi.org/10.1017/ S0956792520000091
  • [19] F.B. Planella, C.P. Please, R.A. Van Gorder, J. of Appl. Math. 83 (1), 106-130 (2018).
  • [20] F.B. Planella, C.P. Please, R.A. Van Gorder, J. of Appl. Math. 79 (3), 876-913 (2019).
  • [21] F.B. Planella, C.P. Please, R.A. Van Gorder, Eur. J. Appl. Math. 32 (2), 242-279 (2021).
  • [22] V. Chaurasiya, D. Kumar, K.N. Rai, J.A. Singh Therm. Sci. Engg. Proc. 20, 100664 (2020).
  • [23] P. Levi, N. Ascherson, Schocken Books, New York, 2, 1-30, (1984).
  • [24] M. Vynnycky, S. Saleem, H. Fredriksson, Appl. Math. Mod. 54, 605-626 (2018).
Uwagi
This work has been funded and supported by CSIR (Council of Scientific and Industrial Research) under the Shyama Prasad Mukherjee Fellowship Scheme with project number SPM-06/1059(0210)/2014-EMR-I.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-109a1a71-0cde-4461-80fc-cab91daf4063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.