Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A similarity solution for conduction dominated solidification of a dilute binary isomorphous alloy has been developed. The effect solidification due to density change during phase transformation has been highlighted and investigated in detail. The governing equations for solid, liquid and mushy phase has been proposed, taking into account the effect of shrinkage or expansion due to density change during phase change. The thermo-physical properties (thermal conductivity and specific heat), equilibrium temperature and phase fraction are evaluated within the mushy zone using averaging technique. The effect of equilibrium and non-equilibrium solidification is investigated using Lever and Scheil’s rule models respectively. In addition, the effect of boundary and initial temperature on solidification behavior of the alloy is also addressed. It has been observed that the interface (liquidus and solidus) moves faster with increase in density ratio and decrease in boundary and initial temperature. No major changes in temperature distribution and interface position has been observed with variation partition coefficient and microscale behavior model (Lever rule and Scheil’s rule).
Wydawca
Czasopismo
Rocznik
Tom
Strony
1087--1102
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr., wzory
Twórcy
autor
- School of Mechanical Sciences, IIT Bhubaneswar, Bhubaneswar, 751012, India
autor
- Chandigarh University, University Centre of Research & Development, Mohali-140413, Punjab
autor
- School of Mechanical Sciences, IIT Bhubaneswar, Bhubaneswar, 751012, India
autor
- School of Mechanical Sciences, IIT Bhubaneswar, Bhubaneswar, 751012, India
Bibliografia
- [1] M.N. Ozisik, John Wiley & Sons 2, 1-356 (1993).
- [2] V. Alexiades, A.D. Solomon, Taylor & Francs 2, 1-34 (1993).
- [3] M. Turkyilmazoglu, Int. J. of Thermal. Sci. 126, 67-73 (2018). DOI: https://doi.org/10.1016/j.ijthermalsci.2017.12.019
- [4] A.N. Ceretani, D.A. Tarzia, Comput. and Appl. Math. 37 (2), 2201-2217 (2018). DOI: https://doi.org/10.1007/s40314-017-0442-0
- [5] L. Barannyk, S.D. Williams, O.I. Ogidan, J.C. Crepeau, A. Sakhnov, Heat Transfer Summer Conference, ASME 59315, V001T10A014, (2019). DOI: https://doi.org/10.1115/HT2019-3703
- [6] M. Parhizi, A. Jain, J. of Heat Trans. 141 (2), (2019). DOI: https://doi.org/10.1115/1.4041956
- [7] S.L. Tariq, H.M. Ali, M.A. Akram, M.M. Janjua, M. Ahmadlouydarab, Appl. Therm. Engg. 176, 115305, (2020). DOI: https://doi.org/10.1016/j.applthermaleng.2020.115305
- [8] A. Agarwal, R.M Sarviya, Engg. Sci. and Tech., An Int. J. 19 (1), 619-631 (2016). DOI: https://doi.org/10.1016/j.jestch.2015.09.014
- [9] S. Chakraborty, P. Dutta, Metall. and Mat. Trans. 32 (3), 562 (2001). DOI: https://doi.org/10.1007/s11663-001-0042-6
- [10] E.S. Jafar, M. Eslamian, M.Z. Saghir, Engg. Sci. and Tech., and Int. J. 19 (1), 511-517 (2016).
- [11] V.R. Voller, A.D. Brent, C. Prakash, Int. J. of Heat and Mass Trans. 32 (9), 1719-1731 (1989).
- [12] V.R. Voller, A.D. Brent, C. Prakash, Appl. Math. Modell. 14 (6), 320-326 (1990).
- [13] V.R. Voller, Int. J. of Heat and Mass Trans. 51 (3), 823-834 (2008).
- [14] J.D. Chung, J.S. Lee, S.T. Ro, H. Yoo, Int. J. of Heat and Mass Trans. 42 (2), 373-377 (1999).
- [15] S. Chakraborty, P. Dutta, Appl. Math. Modell. 26 (4), 545-561 (2002).
- [16] V.R. Voller, Int. J. of Heat and Mass Trans. 49 (11), 1981-19 (2006).
- [17] A. Jakhar, A. Bhattacharya, P. Rath, S.K. Mahapatra, Int. J. of Heat and Mass Trans. 127, 1114-1127 (2018).
- [18] M. Assuncao, M. Vynnycky, S.L Mitchel, Eur. J. Appl. Math. (2020). DOI: https://doi.org/10.1017/ S0956792520000091
- [19] F.B. Planella, C.P. Please, R.A. Van Gorder, J. of Appl. Math. 83 (1), 106-130 (2018).
- [20] F.B. Planella, C.P. Please, R.A. Van Gorder, J. of Appl. Math. 79 (3), 876-913 (2019).
- [21] F.B. Planella, C.P. Please, R.A. Van Gorder, Eur. J. Appl. Math. 32 (2), 242-279 (2021).
- [22] V. Chaurasiya, D. Kumar, K.N. Rai, J.A. Singh Therm. Sci. Engg. Proc. 20, 100664 (2020).
- [23] P. Levi, N. Ascherson, Schocken Books, New York, 2, 1-30, (1984).
- [24] M. Vynnycky, S. Saleem, H. Fredriksson, Appl. Math. Mod. 54, 605-626 (2018).
Uwagi
This work has been funded and supported by CSIR (Council of Scientific and Industrial Research) under the Shyama Prasad Mukherjee Fellowship Scheme with project number SPM-06/1059(0210)/2014-EMR-I.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-109a1a71-0cde-4461-80fc-cab91daf4063