PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase, microstructure and dielectric properties of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics prepared by sol-gel technique

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics were fabricated by sol-gel technique. The XRD results revealed the formation of a single phase perovskite structured Bi0.5Na0.5TiO3-BaTiO3 at 600 °C. The SEM images showed dense microstructure and the optimum density of the ceramics sintered at 1100 °C was 5.2 g/cm3. The saturation polarization (P s ) was found to be increased with increasing temperature while the remnant polarization (P r ) was found to be increased gradually and then decreased abruptly near 85 °C, which could be attributed to the phase transformation. The coercive electric field (E c ) was found to be decreased gradually with increasing temperature. The maximum value of dielectric constant (ɛ r ) at room temperature was 800 and dielectric loss at 1 MHz was 0.07.
Słowa kluczowe
Wydawca
Rocznik
Strony
410--414
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
  • Materials Research Laboratory, Institute of Physics and Electronics, University of Peshawar, Peshawar 25120, Pakistan
autor
  • Materials Research Laboratory, Institute of Physics and Electronics, University of Peshawar, Peshawar 25120, Pakistan
autor
  • National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
Bibliografia
  • [1] SMOLENSKII G. A., ISUPOV V. A., AGRANOVSKAYA A. I., KRAINIK N. N., Sov. Phys.-Solid State (Engl. Transl.), 2 (11) (1961), 2651.
  • [2] HAGIYEV M. S., ISMAIZADE I. H., ABIYEV A. K., Ferroelectrics, 56 (1984), 215.
  • [3] SUCHANICZ J., ROLEDER K., KANIA A., HANDEREK J., Ferroelectrics, 77 (1988), 107.
  • [4] ZVIRGZDS J. V., KAPOSTINS P. P., ZVIRGZDE J. V., KRUZINA T. V., Ferroelectrics, 40 (1982), 75.
  • [5] WANG X. X., TANG X. G., CHAN H. L. W., CHOY C. L., J. Appl. Phys. (A), 80 (2005), 333.
  • [6] TAKENAKA T., MARUYAMA K. I., SAKATA K., Jpn. J. Appl. Phys., 30 (9B) (1991), 2236.
  • [7] SASAKI A., CHIBA T., MAMIYA Y., OTSUKI E., Jpn. J. Appl. Phys., 38 (9B) (1999), 5564.
  • [8] SAKATA K., TAKENAKA T., NAITOU Y., Ferroelectrics, 131 (1992), 219.
  • [9] NAGATA H., KOIZUMI N., TAKENAKA T., Key Eng. Mater., 37 (1999), 169.
  • [10] WANG X. X., CHAN H. L. W., CHOY C. L., J. Am. Ceram. Soc., 86 (10) (2003), 1809.
  • [11] NAGATA H., YOSHIDA M., MAKIUCHI Y., TAKENAKA T., J. Appl. Phys., 42 (12) (2003), 7401.
  • [12] MOULSON A. J., HERBERT J. M., Electroceramics, Chapman and Hall, London, (1990), 71.
  • [13] ZHANG S. T., KOUNGA A B., AULBACH E., DENG Y., J. Am. Ceram. Soc., 91 [12] (2008), 3950.
  • [14] BAI Y., ZHENG G. P., SHI S. Q., Materials Research Bulletin, 46 (2011), 1866.
  • [15] CERNEA M., ANDRONESCU A., RADU R., FOCHI F., GALASSI C., J. Allo. And Comp., 490 (2010), 690.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-108ee032-494f-4c0e-b492-9a5064b46ed7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.