PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of an empirical ground-motion model for postmining induced seismicity near Gardanne, France

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since the closure of mining activities in 2003, the coal basin of Gardanne in South-East France has experienced thousands of small-magnitude earthquake events, mostly triggered by the flooding of mine workings. Some of these events have been powerful enough to be strongly felt by the population, generating nuisance and concern about potential damage to buildings. The aim of this study is to improve the characterisation of the level of ground motion at the surface, by developing a ground-motion model for post-mining induced seismicity, based on several years of recorded data. A Bayesian-based method is applied to the data in order to account for uncertainties in the estimation of moment magnitude. Station-to-station ground-motion site terms are also quantified for the nine recording stations in the area, thus providing additional information on the local site conditions. The developed model is compared to existing prediction equations for seismicity induced by other types of anthropic activities, confirming the need for a specific model in the case of post-mining induced seismicity. Finally, the Gardanne ground-motion model is also integrated with a shake-map procedure, showing how this predictive model may be merged with recorded data in order to generate rapid estimates of shaking levels in the area.
Rocznik
Strony
98--117
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
  • Risks and Prevention Division, BRGM, Orleans, France
  • Risks and Prevention Division, BRGM, Orleans, France
autor
  • Risks and Prevention Division, BRGM, Orleans, France
  • Risks and Prevention Division, BRGM, Orleans, France
  • Institut National de l’Environnement Industriel et des Risques, Nancy, France
  • Institut National de l’Environnement Industriel et des Risques, Nancy, France
Bibliografia
  • [1] Contrucci I, Namjesnik D, Niemz P, Primo Doncel P, Kotyrba A, Mutke G, et al. European feedback on postmining seismicity. J Sustain Mining 2023;22(3):195-218.
  • [2] Primo-Doncel P, Kotyrba A, Cesca S, Sokola-Szewiola V, Konicek P, Kajzar V, et al. PostMinQuake: seismicity of selected closed Europeanhard coal mines during flooding. Z Dtsch Ges Geowiss 2023;173:533-49. https://doi.org/10.1127/zdgg/2023/0341.
  • [3] Dominique P, Aochi H, Morel J. Triggered seismicity in a flooded former coal mining basin (Gardanne area, France). Mine Water Environ 2022;41(2):317-34.
  • [4] Atkinson GM. Ground-motion prediction equation for small-to-moderate events at short hypocentral distances, with application to induced-seismicity hazards. Bull Seismol Soc Am 2015;105(2A):981-92.
  • [5] Edwards B, Crowley H, Pinho R, Bommer JJ. Seismic hazard and risk due to induced earthquakes at a shale gas site. Bull Seismol Soc Am 2021;111(2):875-97.
  • [6] Ancheta TD, Darragh RB, Stewart JP, Seyhan E, Silva WJ, Chiou BSJ, ..., Donahue JL. NGA-West2 database. Earthq Spectra 2014;30(3):989-1005.
  • [7] Douglas J, Edwards B, Convertito V, Sharma N, Tramelli A, Kraaijpoel D, ..., Troise C. Predicting ground motion from induced earthquakes in geothermal areas. Bull Seismol Soc Am 2013;103(3):1875-97.
  • [8] Cremen G, Werner MJ, Baptie B. A new procedure for evaluating ground-motion models, with application to hydraulic-fracture-induced seismicity in the United Kingdom. Bull Seismol Soc Am 2020;110(5):2380-97.
  • [9] Bommer JJ, Stafford PJ, Ruigrok E, Rodriguez-Marek A, Ntinalexis M, Kruiver PP, ..., van Elk J. Ground-motion prediction models for induced earthquakes in the Groningen gas field, The Netherlands. J Seismol 2022:1-28.
  • [10] Contrucci I, Bennani M, Bigarre P, Dominique P. Activité microsismique et caractérisation de la détectabilité des réseaux de surveillance du bassin houiller de Gardanne. In: Journées scientifiques AGAP qualité, oct 2013. Nancy, France; 2013.
  • [11] GEODERIS. Expertise internationale du dossier d’arrét definitif des travaux des concessions de Gardanne (13). Geoderis report 03-PACA-5001r03. 2003.
  • [12] GEODERIS. Bassin de lignite de Provence (13) Revision et mise à jour des aléas lies a l’ancienne activité minière. Geoderis Report S-2016/004DE-16PAC22070. 2016. https://www.mairiedefuveau.fr/wp-content/uploads/2022/06/S2016- 004DE.pdf.
  • [13] Satriano C. SourceSpec - earthquake source parameters from P- or S-wave displacement spectra (v1.4). 2023. https://doi.org/10.5281/ZENODO.3688587.
  • [14] Kuehn NM, Abrahamson NA. The effect of uncertainty in predictor variables on the estimation of ground-motion prediction equations. Bull Seismol Soc Am 2018;108(1):358-70.
  • [15] Weatherill G, Crowley H, Roullé A, Tourliàre B, Lemoine A, Gracianne C, ..., Cotton F. Modelling site response at regional scale for the 2020 European Seismic Risk Model (ESRM20). Bull Earthq Eng 2023;21(2):665-714.
  • [16] Dominique P. Microseismicity in a mining context - the Gardanne coal basin (Bouches-du-Rhone). 1280-1287. Available at. 2016. :[in French], https://jngg2016.sciencesconf.org/80835/JNGG_Nancy_2016_miscrosismicite_Gard.pdf.
  • [17] Kinscher JL, Namjesnik D, Contrucci I, Dominique P, Klein E. Relevance of seismic risk assessment in abandoned mining districts: the case of the Gardanne coal mine, Provence, France. In: 12th International conference on mine closure. TU Bergakademie Freiberg (Mine Closure 2018); 2018. p. 615-24.
  • [18] Namjesnik D, Kinscher J, Contrucci I, Klein E. Impact of past mining on public safety: seismicity in area of flooded abandoned coal Gardanne mine, France. Int J Coal Sci Technol 2022;9(90). https://doi.org/10.1007/s40789-022-00558-1.
  • [19] Whyte C, Stojadinovic B. Spectral content of induced vs. natural seismicity. In: Proceedings of the 2nd European conference on earthquake engineering and seismology. Turkey: Istanbul; 2014. p. 24-9.
  • [20] Brune JN. Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 1970;75(26): 4997-5009. https://doi.org/10.1029/JB075i026p04997.
  • [21] Satriano C, Mejia Uquiche AR, Saurel JM. Spectral estimation of seismic moment, corner frequency and radiated energy for earthquakes in the Lesser Antilles. In: AGU fall meeting abstracts (vol. 2016; 2016. S13Ae2518. bibcode: 2016AGUFM.S13A2518S.
  • [22] Lancieri M, Madariaga R, Bonilla F. Spectral scaling of the aftershocks of the Tocopilla 2007 earthquake in northern Chile. Geophys J Int 2012;189(1):469-80. https://doi.org/10.1111/j.1365-246X.2011.05327.x.
  • [23] Boatwright J, Choy GL, Seekins LC. Regional estimates of radiated seismic energy. Bull Seismol Soc Am 2002;92(4): 1241-55. https://doi.org/10.1785/0120000932.
  • [24] Kanamori H, Anderson DL. Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 1975; 65:1073-95.
  • [25] Madariaga R. Earthquake scaling laws. In: Extreme environmental events. New York, NY: Springer New York; 2011. p. 364-83. https://doi.org/10.1007/978-1-4419-7695-6_22.
  • [26] Douglas J, Gehl P, Bonilla LF, Gélis C. A k model for mainland France. Pure Appl Geophys 2010;167:1303-15.
  • [27] Abercrombie R, Leary P. Source parameters of small earthquakes recorded at 2.5 km depth, Cajon Pass, southern California: implications for earthquake scaling. Geophys Res Lett 1993;20(14):1511-4.
  • [28] Ide S, Beroza GC. Does apparent stress vary with earthquake size? Geophys Res Lett 2001;28(17):3349-52.
  • [29] Douglas J. Ground motion prediction equations (1964-2022). available at. 2022. :(last accessed July 2022), http://gmpe.org.uk.
  • [30] Joyner WB, Boore DM. Methods for regression analysis of strong-motion data. Bull Seismol Soc Am 1993;83(2):469-87.
  • [31] Stan Development Team. Stan: a C++ library for probability and sampling, version 2.30. available at. 2016. :(last accessed July 2022), http://mc-stan.org.
  • [32] McGarr A, Fletcher JB. Development of ground-motion prediction equations relevant to shallow miningeinduced seismicity in the Trail Mountain area, Emery County, Utah. Bull Seismol Soc Am 2005;95(1):31-47.
  • [33] Lior I, Ziv A. The relation between ground acceleration and earthquake source parameters: theory and observations. Bull Seismol Soc Am 2017;107(2):1012-8.
  • [34] Al Atik L, Abrahamson N, Bommer JJ, Scherbaum F, Cotton F, Kuehn N. The variability of ground-motion prediction models and its components. Seismol Res Lett 2010; 81(5):794-801.
  • [35] Monfort D, Roullé A. Estimation statistique de la répartition des classes de sol Eurocode 8 sur le territoire français - phase 1 : rapport final. Rapport BRGM/RP-66250-FR; 2016.
  • [36] Nakamura Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surfacevol. 30. Railway Technical Research Institute, Quarterly Reports 1; 1989.
  • [37] Wald D, Quitoriano V, Heaton TH, Kanamori H, Scrivner CW, Worden CB. TriNet “ShakeMaps”: rapid generation of peak ground-motion and intensity maps for earthquakes in Southern California. Earthq Spectra 1999; 15(3):537-56.
  • [38] Guérin-Marthe S, Gehl P, Negulescu C, Auclair S, Fayjaloun R. Rapid earthquake response: the state-of-the art and recommendations with a focus on European systems. Int J Disaster Risk Reduc 2021;52:101958.
  • [39] Wald D, Worden CB, Quitoriano V, Pankow KL. ShakeMap® manual, technical manual, users guide, and software guide. 2006.
  • [40] Gehl P, Douglas J, D’Ayala D. Inferring earthquake groundmotion fields with Bayesian Networks. Bull Seismol Soc Am 2017;107(6).
  • [41] Jayaram N, Baker JW. Correlation model for spatially distributed ground-motion intensities. Earthq Eng Struct Dynam 2009;38(15):1687-708.
  • [42] Grünthal G. European macroseismic scale 1998. European Seismological Commission (ESC); 1998.
  • [43] Caprio M, Tarigan B, Worden CB, Wiemer S, Wald DJ. Ground motion to intensity conversion equations (GMICEs): a global relationship and evaluation of regional dependency. Bull Seismol Soc Am 2015;105(3):1476-90.
  • [44] Chodacki J, Frolik A, Kotyrba A, Mutke G. Monitoring of post-mining areas in the PostMinQuake project at the Kazimierz-Juliusz test site. In: 28th international science and technology conference, natural mining hazards 2021, presentation; 2021. p. 8-10. XI 2021.
  • [45] Yenier E, Atkinson GM. Equivalent point-source modeling of moderate-to-large magnitude earthquakes and associated ground-motion saturation effects. Bull Seismol Soc Am 2014; 104(3):1458-78.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-108e957f-e1bc-4432-b4fc-8514071dfc0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.