## Łukasz KACPERSKI, Joanna KARCZ

e-mail: lkacperski@zut.edu.pl

Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska, Wydział Technologii i Inżynierii Chemicznej, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

# Modelowanie rozkładu energii kinetycznej burzliwości i jej szybkości dyssypacji podczas wytwarzania zawiesiny lekkiej

## Wprowadzenie

Wielkość energii kinetycznej burzliwości oraz szybkość jej dyssypacji są istotnym wyznacznikiem intensywności mieszania. Większe jej wartości są pożądane ze względu na intensyfikację ruchu masy i ciepła, zarówno w skali makro- jak i mikroskopowej. Większe wartości energii kinetycznej sprzyjają uzyskaniu bardziej jednorodnych układów wielofazowych (np. rozbijanie aglomeratów cząstek ciała stałego), przyspieszają wymianę ciepła, szybkość reakcji [Kamieński, 2004; Stręk, 1981]. Ilościowe wyznaczenie dyssypacji energii kinetycznej w mieszalniku jest trudne do zrealizowania [Kresta i Wood, 1993; Stelmach i in., 2005]. W takim przypadku wartościowe mogą okazać się metody numerycznej mechaniki płynów.

Istniejące dwurównaniowe modele burzliwości wykorzystujące koncepcję uśrednień *Reynoldsa* równań *Naviera-Stokesa (RANS)*, dają możliwość znalezienia przybliżonego rozwiązania numerycznego przepływu burzliwego i dają stosunkowo dobre wyniki modelowania [*Joshi i in., 2011*], w porównaniu z wymagającymi obliczeniowo metodami symulacji bezpośrednich (*DNS*), czy też symulacji wielkowirowych (*LES*).

Symulacje numeryczne przedstawione w tej pracy miały na celu określenie rozkładów energii kinetycznej burzliwości oraz szybkości jej dyssypacji w zawiesinie lekkiej mieszanej mechanicznie (w takiej zawiesinie gęstość cząstek ciała stałego jest mniejsza niż gęstość cieczy). Omówione zostały dane otrzymane z obliczeń numerycznych przy zastosowaniu trzech wybranych, półempirycznych, dwurównaniowych modeli burzliwości k- $\varepsilon$ , k- $\omega$ , lub SST (Shear Stress Transport).

#### Zakres pracy

Symulacje numeryczne operacji mieszania zawiesiny lekkiej przeprowadzono w cylindrycznym, płaskodennym zbiorniku o średnicy wewnętrznej D = 0,295 m (Rys. 1).



Rys. 1. Podstawowe wymiary geometryczne mieszalnika

Zbiornik napełniony był do wysokości H = D zawiesiną, na którą składała się ciecz o gęstości  $\rho_l = 997 \text{ kg/m}^3$  i o lepkości  $\mu_l = 0,001 \text{ Pa·s}$  oraz granulki polietylenu o gęstości  $\rho_s = 952 \text{ kg/m}^3$  i średniej średnicy cząstek  $d_s = 3,82 \text{ mm}$ . Zbiornik wyposażony był w cztery symetrycznie rozmieszczone standardowe przegrody (B = 0,1D). Energię do układu dostarczało mieszadło turbinowe o sześciu łopatkach pochylonych pod kątem 45° (PBT6) o średnicy d = 0,33D, pompujące płyn ku powierzchni swobodnej. Mieszadło zawieszone było na wysokości h = 0,67H. Częstość obrotów mieszadła wynosiła n = 2,47 1/s, a udział cząstek ciała stałego w zawiesinie  $X_s = 0,01$ .

Obliczenia numeryczne wykonano za pomocą oprogramowania AN-SYS CFX 13.0 Równania transportu rozwiązywano metodą objętości skończonych. Dyskretyzację przestrzenną obszaru obliczeniowego wykonano za pomocą niestrukturalnej siatki numerycznej złożonej z ok. 659 tys. elementów czworościennych. Dyskretyzację równań transportu przeprowadzono za pomocą schematu wysokiej rozdzielczości. W obliczeniach numerycznych przepływu burzliwego płynu (Re = 26760) w mieszalniku zastosowano modele burzliwości k- $\varepsilon$ , k- $\omega$ , lub SST, a do opisy układu dwufazowego – wielofazowy Particle Model, w którym rozkład stężenia modelowany jest we współrzędnych eulerowskich i który uwzględnia prędkość poślizgu międzyfazowego. Ruch mieszadła modelowano metodą Multiple Reference Frame zakładając, że przepływ w zbiorniku odbywa się w sposób ustalony.

## Wyniki symulacji

Wyniki obliczeń przedstawiono graficznie w postaci konturów energii kinetycznej burzliwości k i szybkości jej dyssypacji  $\varepsilon$  w przekrojach osiowych i promieniowych mieszalnika. Opracowano także osiowe profile tych wielkości (k,  $\varepsilon$ ) dla wybranych współrzędnych promieniowych.

Analizowano różnice, jakie występują w rozkładach kinetycznej energii burzliwości i jej dyssypacji, w zależności od zastosowanego modelu burzliwości.

Jak wynika z rys. 2 przedstawiającego kontury energii kinetycznej burzliwości, największe wartości energii obserwuje się na wysokości zawieszenia mieszadła (h = 0,67H). Nieco mniejsze jej wartości występują na powierzchni swobodnej płynu, skąd porywane są cząstki lekkiego ciała stałego, wciągane następnie pod powierzchnię cieczy. W bezpośredniej bliskości mieszadła, największa energia burzliwości występuje w strumieniu przed łopatkami mieszadła (model k- $\varepsilon$ ), natomiast w przypadku modelu k- $\omega$  – w całym obszarze zakreślanym przez mieszadło. Najmniejsze wartości k uzyskano dla modelu *SST*. Ponadto, zwraca uwagę obszar o słabo rozwiniętej burzliwości bezpośrednio nad mieszadłem dla modelu k- $\varepsilon$ .



Rys. 2. Kontury energii kinetycznej burzliwości k w przekroju osiowym mieszalnika odchylonym o kąt 45° względem przegród (lewa kolumna) oraz w przekroju promieniowym zbiornika dla wysokości zawieszenia mieszadła h = 0,67H (prawa kolumna) i modeli burzliwości: a) k- $\varepsilon$ ; b) k- $\omega$ ; c) SST

Bezwymiarowe profile energii kinetycznej burzliwości (Rys. 3) wykazują podobieństwo jakościowe w pobliżu ścian zbiornika, gdzie wartości k otrzymane dla różnych modeli burzliwości rosną praktycznie liniowo licząc od dna zbiornika do powierzchni swobodnej. Dla wszystkich rozpatrywanych modeli burzliwości, największe wartości energii kinetycznej obserwuje się dla bezwymiarowej współrzędnej promieniowej r/R = 0.73.



Rys. 3. Osiowe profile bezwymiarowej energii kinetycznej burzliwości dla różnych bezwymiarowych współrzędnych promieniowych r/R i dla różnych modeli burzliwości: a) k- $\varepsilon$ ; b)  $k-\omega$ ; c) SST

Kontury dyssypacji energii kinetycznej burzliwości, przedstawione na rys. 4, świadczą o bardzo szybkim rozpraszaniu energii burzliwej w pobliżu łopatek mieszadła. Najszybciej energia dyssypowana jest w obszarze zakreślanym przez mieszadło (model k- $\varepsilon$ ), natomiast dla modeli k- $\omega$  i *SST* maksymalne rozpraszanie występuje w wirach zanikających nad końcami łopatek mieszadła. Na powierzchni swobodnej płynu energia jest z największą intensywnością rozpraszana w podobnym obszarze,



Rys. 4. Kontury dyssypacji *e* energii kinetycznej burzliwości w przekroju osiowym mieszalnika odchylonym o kąt 45° względem przegród (lewa kolumna) oraz w przekroju promieniowym zbiornika dla wysokości zawieszenia mieszadła h = 0,67H (prawa kolumna) i modeli burzliwości: a) k- $\varepsilon$ ; b) k- $\omega$ ; c) SST

w którym występują maksima energii kinetycznej. Dlatego lokalizacja ta jest miejscem o najbardziej intensywnych zjawiskach powstawania i zaniku energii wirów. Jest to korzystne zjawisko podczas rozbijania aglomeratów cząstek ciała stałego zalegających na powierzchni swobodnej. Model k- $\varepsilon$  ujawnia ponadto dużą szybkość dyssypacji energii tuż przy ścianie zbiornika (Rys. 4a i 5d).

Rys. 5 przedstawia profile dyssypacji energii kinetycznej burzliwości. Maksymalne wartości w pobliżu łopatek mieszadła dla modelu k- $\varepsilon$  są o ok. 2 razy większe niż dla modelu k- $\omega$  i ok. 3 razy większe niż dla modelu *SST* (Rys. 5a).



Rys. 5. Osiowe profile bezwymiarowej szybkości dyssypacji energii kinetycznej burzliwości dla danego modelu burzliwości i bezwymiarowej odległości od osi zbiornika: a) r/R = 0,34; b) r/R = 0,51; c) r/R = 0,73; d) r/R = 0,99

Dyssypacja energii osiąga największą szybkość w pętli cyrkulacyjnej generowanej przez mieszadło (r/R = 0,73), kolejno dla modeli burzliwości:  $k-\omega$ , SST i  $k-\varepsilon$  (Rys. 5c).

# Podsumownanie

Rozkład energii kinetycznej burzliwości i szybkości jej dyssypacji ma zbliżony charakter jakościowy dla rozpatrywanych modeli burzliwości k- $\varepsilon$ , k- $\omega$  i SST. Jednak występują różnice w intensywności burzliwości w poszczególnych obszarach zbiornika. Dzięki takim danym można określić strefy o największej zdolności do rozpraszania cząstek ciała stałego. Przeprowadzone symulacje wykazały, że są to: obszar bezpośrednio przy mieszadle, powierzchnia swobodna w pobliżu współrzędnej r/R = 0,5 oraz obszar pętli cyrkulacyjnej rozciągający się między przegrodami od powierzchni swobodnej do bezwymiarowej współrzędnej osiowej h/H = 0,4.

## LITERATURA

- Joshi J.B., Nere N.K., Rane C.V., Murthy B.N., Mathpati C.S., Patwardhan A.W., Ranade V.,V., 2011. CFD simulation of stirred tanks: comparison of turbulence models. Part I: radial flow impellers. *Can. J. Chem. Eng.*, 89, 23–82. DOI: 10.1002/cjce.20446.
- Kresta S., Wood P., 1993. The flow field produced by a pitched blade turbine: characterization of the turbulence and estimation of dissipation rate. *Chem. Eng. Sci.*, 48, 10, 1761-1774. DOI: 10.1016/0009-2509(83)80346-R.
- Kamieński J., 2004. Mieszanie układów wielofazowych. WNT, Warszawa.
- Stelmach J., Kurasiński T., Kuncewicz C., 2005. Analiza porównawcza wybranych metod obliczania szybkości dyssypacji energii. *Inż. Chem. Proc.*, 26, 201-215
- Stręk F., 1981. Mieszanie i mieszalniki. WNT, Warszawa