Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Schizonepeta tenuifolia Briq. (ST) has been used as an aromatic exterior-releasing medicine in clinical practice for thousands of years in China. Previous researches have revealed both volatile oil (STVO) and aqueous extract (STAE) from ST showed significant pharmacological activities, such as anti-virus, anti-inflammation, anti-oxidation, and immunoregulation. However, the influence between each other was still unknown. The purpose of this study was to compare the pharmacokinetic profiles of three main flavonoids (luteoloside, apigetrin, and hesperidin) in STAE to illustrate the influence of STVO. A liquid chromatography-tandem mass spectrometry (HPLC-MS) method was established to quantitatively analyze the three absorbed ingredients in the plasma of healthy rats. Biological samples were analyzed on an Agilent Eclipse Plus C18 column (3.0 mm × 150 mm, 3.5 μm) with gradient mobile phase (containing 0.2% formic acid and acetonitrile) at a flow rate of 0.8 mL/min. All the analytes and quercitrin (IS) were investigated with an electrospray ionization source (ESI) using multiple-reaction monitoring (MRM) in negative ionization mode. In addition, this quantitative method showed good linearities (r ≥ 0.9995) and the lower limits of quantification were 0.590–1.19 ng/mL. The intra- and inter-day precisions ranged 3.47–10.45% and 4.29–11.28% for the three analytes. The mean extraction recoveries were in the range of 77.41–109.79% and the average matrix effects were within 83.41–112.67%. The validated method has been fully applied to compare the pharmacokinetic parameters of the three flavonoid glycosides in rat plasma after oral administration of STAE and STAE+STVO. In comparison of luteoloside, apigetrin, and hesperidin in STAE group, it was found that different degree of increasing existed for the time to reach the maximum concentration (T max), elimination half-life time (T 1/2), the area under the concentration curves (AUC0→t and AUC0→∞) and the maximum concentrations (C max) in STAE+STVO group. As can be seen from above results, STVO could improve the absorption and bioavailability of the three analytes. These findings would provide some active and strong basis of safe clinical application for ST and further exploitation for STVO from the perspective of drug–drug interaction.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
32--40
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing 210008, PR China
autor
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
autor
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
autor
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
autor
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
autor
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
autor
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
autor
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
autor
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
autor
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
Bibliografia
- 1. Choi, Y. Y.; Kim, M. H.; Kim, J. H.; Jung, H. S.; Sohn, Y.; Choi, Y. J.; Hwang, M. K.; Kim, S. H.; Kim, J.; Yang, W. M. Phytother. Res. 2012, 27, 1131–5.
- 2. Lin, Y. H.; Chen, H. Y.; Chiu, J. C.; Chen, K. J.; Ho, H. Y.; Yang, S. H. Evid. Complement. Alternat. Med. 2018, 6514705.
- 3. Byun, M. W. J. Med. Food 2014, 7, 350–6.
- 4. Kim, S. J.; Kim, J. S.; Choi, I. Y.; Kim, D. H.; Kim, M. C.; An, H. J.; Na, H. J.; Kim, N. H.; Moon, P. D.; Myung, N. Y.; Lee, J. Y.; Jeong, H. J.; Um, J. Y.; Shin, T. Y.; Kim, H. M.; Hong, S. H. Am. J. Chinese Med. 2008, 36, 1145–58.
- 5. Tae, K. S.; Kim, S. J. Trop. J. Pharm. Res. 2012, 13, 397–404.
- 6. Do, M. H.; Choi. J.; Kim, Y.; Park, H. Y.; Ha, S. K.; Hui, J. Y. J. Function. Food 2019, 62, 103531.
- 7. State Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. Beijing, 2020.
- 8. He, T.; Tang, Q.; Zeng, N.; Gou, L.; Liu, J.W.; Yang, J.; Yu, L.; Wang, Z.; Gong, X. P. China J. Chin. Mater. Med. 2013, 38, 1772–7.
- 9. Lyu, H. J.; Wen, T. Q.; Luo, J.; Liu, X. B.; Yang, J.; Zeng, N. Chin. Pharmacol. Bull. 2019, 35, 371–5.
- 10. Zang, L. Q.; Hu, F.; Wei, M.; Wang, N. P.; Wei, J. B. Guangxi J. Chin. Tradit. Med. 2006, 29, 246–8.
- 11. Zeng, N.; Yang, X.; Zhao, L.; Liu, X. S.; Zhou, Z. H.; Song, M. F. Pharmacol. Clin. Chin. Materia Medica 2010, 23, 31–3.
- 12. Yu, S.; Chen, Y. W.; Zhang, L.; Shan, M. Q.; Tang, Y. P.; Ding, A. W. Int. J. Mol. Sci. 2011, 12, 6635–44.
- 13. Kang, H.; Han, S. W.; Hong, J. W.; Sohn, N. W. J. Pharm. Pharmacol. 2012, 62, 1069–76.
- 14. Wang, B. S.; Huang, G. J.; Tai, H. M.; Huang, M. H. Food Chem. Toxicol. 2012, 50, 526–31.
- 15. Shin, T. Y.; Jeong, H. J.; Jun, S. M.; Chae, H. J.; Kim, H. R.; Baek, S. H.; Kim, H. M. Immunopharm. Immunot. 1999, 21, 705–15.
- 16. Huang, X. H.; Chen, J.; Xu, X. Q.; Zhang, W. T., Zhao, C. C. Chem. Nat. Compd. 2016, 52, 1005–7.
- 17. Kubo, M.; Sasaki, H.; Endo, T.; Taguchi, H.; Yosioka, I. Chem. Pharm. Bull. 1986, 34, 3097–101.
- 18. Lee, I. K.; Kim, M. A.; Lee, S. Y.; Taguchi, H.; Yosioka, I. Nat. Prod. Sci. 2008, 14, 100–6.
- 19. Hanchang, W.; Khamchan, A.; Wongmanee, N.; Seedadee, C. Life Sci. 2019, 235, 116858.
- 20. Liu, X. X.; Yu, D. D.; Chen, M. J.; Sun, T.; Li, G.; Huang, W. J.; Nie, H.; Wang, C.; Zhang, Y. X.; Gong, Q.; Ren, B. X. Int. Immunopharmacol. 2015, 25, 370–6.
- 21. Szekalska, M.; Sosnowska, K.; Tomczykowa, M.; Winnicka, K.; Kasacka, I.; Tomczyk, M. Biomed. Pharmacother. 2020, 121, 109681.
- 22. Hu, W. C.; Wang, X. F.; Wu, L.; Shen, T.; Ji, L. L.; Zhao, X. H.; Si, C. L.; Jiang, Y. Y.; Wang, G. C. Food Funct. 2016, 7, 1002–13.
- 23. Gu, Y. Y.; Zhang, X.; Xie, M.; Tao, X. J.; Zhang, W. J.; Zhang, C. G.; Ying, X. X. Lat. Am. J. Pharm. 2019, 38, 1498–504.
- 24. Qiu, F.; Li, Z. X.; He, L.; Wang, D. Biomed. Chromatogr. 2013, 27, 311–7.
- 25. Chen, Z. X.; Ying, X. X.; Meng, S.; Zhu, X.; Jiang, H.; Cao, Q. S.; Wang, L.; Meng, F. H. Nat. Prod. Res. 2012, 26, 530–9.
- 26. Chen, Z. X.; Ying, X. X.; Meng, S.; Zhu, X.; Jiang, H.; Cao, Q. S.; Li, X. Y.; Meng, F. H. Arch. Pharm. Res. 2011, 34, 741–6.
- 27. Zhu, H. Y.; Guan, J.; Shi, J. Y.; Pan, X.; Chang, S.; Zhang, T. Y.; Feng, B.; Gu, J. K. J. Sep. Sci. 2020, 43, 406–17.
- 28. Guidance for Industry: Bioanalytical Method Validation, US Food and Drug Administration, 2001.
- 29. Technical Requirements for the Registration of Pharmaceutical for Human Use, Validation of Analytical Procedures: Text and Methodology Q2 (R1), International Conference on Harmonization (ICH), 2005.
- 30. Akbari, J.; Saeedi, M.; Farzin, D.; Morteza-Semnani, K.; Esmaili, Z. Pharm. Biol. 2015, 53, 1442–7.
- 31. Fang, J. Y.; Tsai, T. H.; Hung, C. F.; Wong, W. W. J. Pharm. Pharmacol. 2004, 56, 1493–500.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-108b68c8-6e1c-45b5-96fa-f4c8898bcdd8