Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Tandem (two p-n junctions connected by tunnel junction) and multijunction solar cells (MJSCs) based on AIIIBV semiconductor compounds and alloys are the most effective photovoltaic devices. Record efficiency of the MJSCs exceeds 44% under concentrated sunlight. Individual subcells connected in series by tunnel junctions are crucial components of these devices. In this paper we present atmospheric pressure metal organic vapour phase epitaxy (AP-MOVPE) of InGaAsN based subcell for InGaAsN/GaAs tandem solar cell. The parameters of epitaxial structure (optical and electrical), fabrication process of the test solar cell devices and current-voltage (J-V) characteristics are presented and discussed.
Słowa kluczowe
Rocznik
Tom
Strony
151--156
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
autor
- Division of Microelectronics and Nanotechnology, Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Z. Janiszewskiego 11/17, 50–372 Wrocław, Poland
autor
- Division of Microelectronics and Nanotechnology, Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Z. Janiszewskiego 11/17, 50–372 Wrocław, Poland
autor
- Division of Microelectronics and Nanotechnology, Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Z. Janiszewskiego 11/17, 50–372 Wrocław, Poland
autor
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovicova 3, 812 19 Bratislava, Slovakia
autor
- Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50–370, Poland
autor
- Division of Microelectronics and Nanotechnology, Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Z. Janiszewskiego 11/17, 50–372 Wrocław, Poland
autor
- Division of Microelectronics and Nanotechnology, Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Z. Janiszewskiego 11/17, 50–372 Wrocław, Poland
autor
- Division of Microelectronics and Nanotechnology, Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Z. Janiszewskiego 11/17, 50–372 Wrocław, Poland
autor
- Division of Microelectronics and Nanotechnology, Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Z. Janiszewskiego 11/17, 50–372 Wrocław, Poland
autor
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovicova 3, 812 19 Bratislava, Slovakia
autor
- Division of Microelectronics and Nanotechnology, Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Z. Janiszewskiego 11/17, 50–372 Wrocław, Poland
Bibliografia
- [1] W. Shockley and H. J. Queissery, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys., vol. 32, pp. 510–519, 1961.
- [2] G. Conibeer, “Third-generation photovoltaics”, Materials Today, vol. 10, pp. 42-50, 2007.
- [3] S. P. Philipps et al., “Present Status in the Development of III-V Multi-Junction Solar Cells”, in Next Generation of Photovoltaics, A. Cristobal, A. Marti Vega, L. Luque (eds), Springer Series in Optical Sciences, Vol. 165, pp. 1-22, 2012.
- [4] C. B. Honsberg, S. P. Bremner and R. Corkish, “Design trade-offs and rules for multiple energy level solar cells”, Physica E: Low-dimensional Systems and Nanostructures, vol. 14, pp. 136-141, 2007.
- [5] T. Trupke, M. A. Green and P. Würfel., “ Improving solar cell efficiencies by down-conversion of high-energy photons”, J. Appl. Phys., vol. 92, pp. 1668-1674, 2002.
- [6] H.-Q. Wang et al., “Rare-Earth Ion Doped Up-Conversion Materials for Photovoltaic Applications,” Advanced Materials, vol. 23, pp. 2675-2680, 2011.
- [7] H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Materials, vol. 9, pp. 205-213, 2002.
- [8] R. T. Ross and A. Nozik, “Efficiency of hot-carrier solar energy converters,” J. Appl. Phys., vol. 53, pp. 3813-3818, 1982.
- [9] M. Weyers, M. Sato and H. Ando, “Red Shift of Photoluminescence and Absorption in Dilute GaAsN Alloy Layers,” Jpn. J. Appl. Phys, vol. 31(7A), pp. L853-L855, 1992.
- [10] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki and Y. Yazawa, “GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance ,” Jpn. J. Appl. Phys, vol. 35, pp. 1273-1275, 1996.
- [11] B. Ściana et al., “Influence of the AP MOVPE process parameters on properties of (In, Ga)(As, N)/ GaAs heterostructures for photovoltaic applications,” Proceedings of SPIE, vol. 8902, pp. 89020J-1 – 89020J-8, 2013.
- [12] B. Ściana et al., “MOVPE growth of AIIIBV-N semiconductor compounds for photovoltaic applications,” Cryst. Res. Technol., vol. 47, pp. 313-320, 2012.
- [13] D. Radziewicz et al., “Influence of the MOVPE growth parameters on the properties of InGaAsN/GaAs MQW structures for solar cells application,” ASDAM 2012 - Conference Proceedings: The 9th International Conference on Advanced Semiconductor Devices and Microsystems, pp. 123-126, 2012.
- [14] “PN4300PC Electrochemical C-V Profiler with Photovoltage Spectroscopy,” Operating Manual, Accent Semiconductor Technologies Inc. issue 2, September 2000.
- [15] F. H. Pollack and H. Shen, “Photoreflectance characterization of semiconductors and semiconductor heterostructures,” Journal of Electronic Materials, vol. 19, pp. 399-406, 1990.
- [16] J. Misiewicz, P. Sitarek, G. Sek and R. Kudrawiec, “Semiconductor heterostructures and device structures investigated by photoreflectance spectroscopy,” Materials Science- Poland, vol. 21, pp. 263-320, 2003.
- [17] E. Canovas et al., “Photoreflectance analysis of a GaInP/GaInAs/Gemultijunction solar cell ,” Appl. Phys. Lett., vol. 97, pp. 203504(1)-203504(3), 2010.
- [18] J. Gray, “The Physics of the Solar Cell,” in Handbook of Photovoltaic Science and Engineering, Second Edition, A. Luque and S. Hegedus (eds), John Wiley & Sons, pp. 82-129, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-108a2271-beb6-4f67-a475-7e7b12ba196b