PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Approximation of additive functional equations in NA Lie C*-algebras

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, by using fixed point method, we approximate a stable map of higher *-derivation in NA C*-algebras and of Lie higher *-derivations in NA Lie C*-algebras associated with the following additive functional equation [wzór], where m ≥ 2.
Wydawca
Rocznik
Strony
37--44
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
  • School of Science, Hubei University of Technology, Wuhan, Hubei 430068, P.R. China
autor
  • Department of Mathematics, Iran University of Science and Technology, Tehran, Iran
Bibliografia
  • [1] Najati A., Eskandani G. Z., Stability of derivations on proper Lie CQ* -algebras, Commun. Korean Math. Soc., 2009, 24, 5–16
  • [2] Jung S.-M., Nam Y. W., Hyers-Ulam stability of Pielou logistic difference equation, J. Nonlinear Sci. Appl., 2017, 10, 3115–3122
  • [3] Lu G., Xie J., Liu Q., Jin Y., Hyers-Ulam stability of derivations in fuzzy Banach space, J. Nonlinear Sci. Appl., 2016, 9, 5970–5979
  • [4] Abdou A., Cho Y. J., Saadati R., Distribution and survival functions with applications in intuitionistic random Lie C*-algebras, J. Comput. Anal. Appl., 2016, 21, 345–354
  • [5] Cho Y. J., Saadati R., Vahidi J., Approximation of homomorphisms and derivations on non-Archimedean Lie C*-algebras via fixed point method, Discrete Dyn. Nat. Soc., 2012, art. ID 373904
  • [6] Jang S. Y., Saadati R., Approximation of the Jensen type functional equation in non-Archimedean C*-algebras, J. Comput. Anal. Appl., 2015, 18, 472–491
  • [7] Kang J. I., Saadati R., Approximation of homomorphisms and derivations on non-Archimedean random Lie C*-algebras via fixed point method, J. Ineq. Appl., 2012, art. ID 251
  • [8] Moslehian M. S., Sadeghi G., A Mazur-Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal., 2008, 69, 3405-3408
  • [9] Ghaemi M. B., Choubin M., Saadati R., Park C., Shin D. Y., A fixed point approach to the stability of Euler-Lagrange sextic (a, b)-functional equations in Archimedean and non-Archimedean Banach spaces, J. Comput. Anal. Appl., 2016, 21, 170–181
  • [10] Shilkret N., Non-Archimedean Banach algebras, PhD thesis, Polytechnic University, ProQuest LLC, 1968
  • [11] Diaz J. B., Margolis B., A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 1968, 74, 305–309
  • [12] Alsulami H. H., Kenari H. M., O’Regan D., Saadati R., Multi-C*-ternary algebras and applications, J. Inequal. Appl., 2015, 2015:223
  • [13] Cho Y. J., Park C., Rassias T. M., Saadati R., Stability of functional equations in Banach algebras, Springer, Cham, 2015
  • [14] Agarwal R. P., Saadati R., Salamati A., Approximation of the multiplicatives on random multi-normed space, J. Inequal. Appl., 2017, 2017:204
  • [15] Alshybani S., Vaezpour S. M., Saadati R., Generalized Hyers-Ulam stability of mixed type additive-quadratic functional equation in random normed spaces, J. Math. Anal., 2017, 8, 12–26
  • [16] Aoki T., On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 1950, 2, 64–66
  • [17] Bahyrycz A., Brzdęk J., Jablońska E., Olko J., On functions that are approximate fixed points almost everywhere and Ulam’s type stability, J. Fixed Point Theory Appl., 2015, 17, 659–668
  • [18] Cho Y. J., Saadati R., Yang Y.-O., Kenari H. M., A fixed point technique for approximate a functional inequality in normed modules over C*-algebras, Filomat 2016, 30, 1691–1696
  • [19] De la Sen M., O’Regan D., Saadati R., Characterization of modular spaces, J. Comput. Anal. Appl., 2017, 22, 558–572
  • [20] Găvruță P., A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 1994, 184, 431–436
  • [21] Hyers D. H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 1941, 27, 222–224
  • [22] Hyers D. H., Isac G., Rassias Th. M., Stability of Functional Equations in Several variables, Birkhäuser, Basel, 1998
  • [23] Kannappan P., Functional Equations and Inequalities with Applications, Springer Science, New York, 2009
  • [24] Kim S. O., Bodaghi A., Park C., Stability of functional inequalities associated with the Cauchy-Jensen additive functional equalities in non-Archimedean Banach spaces, J. Nonlinear Sci. Appl., 2015, 8, 776–786
  • [25] Naeem R., Anwar M., Jessen type functionals and exponential convexity, J. Math. Computer Sci., 2017, 17, 429–436
  • [26] Pansuwan A., Sintunavarat W., Choi J. Y., Cho Y. J., Ulam-Hyers stability, well-posedness and limit shadowing property of the fixed point problems in M-metric spaces, J. Nonlinear Sci. Appl., 2016, 9, 4489–4499
  • [27] Park C., Anastassiou G. A., Saadati R., Yun S., Functional inequalities in fuzzy normed spaces, J. Comput. Anal. Appl., 2017, 22, 601–612
  • [28] Piri H., Rahrovi S., Kumam P., Generalization of Khan fixed point theorem, J. Math. Computer Sci., 2017, 17, 76–83
  • [29] Rassias Th. M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 1978, 72, 297–300
  • [30] Saadati R., Rassias T. M., Cho Y. J., Approximate (α, β, γ)-derivation on random Lie C*-algebras, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 2015, 109, 1–10
  • [31] Shoaib A., Azam A., Arshad M., Ameer E., Fixed point results for multivalued mappings on a sequence in a closed ball with applications, J. Math. Computer Sci., 2017, 17, 308–316
  • [32] Singh D., Chauhan V., Kumam P., Joshi V., Thounthong P., Applications of fixed point results for cyclic Boyd-Wong type generalized F-Psi-contractions to dynamic programming, J. Math. Computer Sci., 2017, 17, 200–215
  • [33] Ulam S. M., Problems in modern mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964
  • [34] Wang Z., Sahoo P. K., Approximation of the mixed additive and cubic functional equation in paranormed spaces, J. Nonlinear Sci. Appl., 2017, 10, 2633–2641
  • [35] Zhou M., Liu X. L., Cho Y. J., Damjanovic B., Ulam-Hyers stability, well-posedness and limit shadowing property of the fixed point problems for some contractive mappings in Ms-metric spaces, J. Nonlinear Sci. Appl., 2017, 10, 2296–2308
  • [36] Cădariu L., Radu V., On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber., 2004, 346, 43–52
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1089736d-a4f0-4a84-89e6-993f2cbaf3ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.