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Abstract. The paper continues the interesting study of the domination subdivision number
and the domination multisubdivision number. On the basis of the constructive characteri-
zation of the trees with the domination subdivision number equal to 3 given in [H. Aram,
S.M. Sheikholeslami, O. Favaron, Domination subdivision number of trees, Discrete Math.
309 (2009), 622–628], we constructively characterize all connected unicyclic graphs with the
domination multisubdivision number equal to 3. We end with further questions and open
problems.
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1. INTRODUCTION

For domination problems, multiple edges and loops are irrevelant, so we forbid them.
Additionaly, in this paper we consider connected graphs only. We use V (G) and E(G)
for the vertex set and the edge set of a graph G and denote |V (G)| = n, |E(G)| = m.

The neighbourhood NG(v) of a vertex v ∈ V (G) is the set of all vertices adjacent
to v.

We say that a vertex v is a universal vertex of G if it is a neighbour of every other
vertex of a graph and v is a leaf of G if v has exactly one neighbour in G. A vertex v is
called a support vertex if it is adjacent to a leaf. If v is adjacent to more than one leaf,
then we call v a strong support vertex. The degree of a vertex v is dG(v) = |NG(v)|.

A subset D of V (G) is dominating in G if every vertex of V (G)−D has at least
one neighbour in D. Let γ(G) be the minimum cardinality among all dominating sets
in G. A minimum dominating set of a graph G is called a γ(G)-set. A vertex v ∈ V (G)
is γ(G)-critical if γ(G− v) < γ(G).

c© Wydawnictwa AGH, Krakow 2018 409



410 Joanna Raczek

For a graph G = (V,E) subdivision of the edge e = uv ∈ E with vertex x leads to
a graph with vertex set V ∪ {x} and edge set (E − {uv}) ∪ {ux, xv}. Let Ge1,e2,...,ek

denote the graph G with subdivided edges e1, e2, . . . , ek, where each edge is subdivided
once. Let Ge,k denote graph G with subdivided edge e with k vertices (instead of edge
e = uv we put a path (u, x1, x2, . . . , xk, v)). For k = 1 we write Ge.

The domination subdivision number, sd(G), of a graph G is the minimum number
of edges which must be subdivided (where each edge can be subdivided at most
once) in order to increase the domination number. We consider subdivision number
for connected graphs of order at least 3, since the domination number of the graph
K2 does not increase when its only edge is subdivided. The domination subdivision
number was defined in [13] and studied, for example in [1, 3, 6].

There are also many papers concerning total domination subdivision number
(see for example [5, 8]), roman domination subdivision number, paired domination
subdivision number, double domination number any many more.

2. MOTIVATION AND RELATION TO PREVIOUS WORK

In this paper we continue the study of the domination multisubdivision number
defined by Dettlaff, Raczek and Topp in [4]. Let msd(uv) be the minimum number of
subdivisions of the edge uv such that γ(G) increase. Let the domination multisubdivision
number of a graph G,m > 0, denoted by msd(G), be defined as

msd(G) = min{msd(uv) : uv ∈ E(G)}.

Domination multisubdivision number is well defined for all graphs with at least one
edge. In [4] were also studied some complexity aspects regarding the domination
subdivision and domination multisubdivision numbers of graphs. That is, there was
studied the following decision problems. Given a graph G = (V,E) with the domination
number γ(G): Is sd(G) > 1? and, Is msd(G) > 1? As a result, in [4], was obtained
that these decision problems for the domination subdivision number, as well as for
the domination multisubdivision number, are NP-complete even for bipartite graphs.
In this sense, it is desirable to find or describe some families of graphs in which is
possible to give the exact value for these parameters.

A sudy of similar parameter, namely total domination multisubdivision number
was carried in [2].

A unicyclic graph is a graph containing precisely one cycle. A family of unicyclic
graphs is widely studied by many authors in the theory of domination, see for example
[7, 10,11].

As it was proven in [4], msd(G) ∈ {1, 2, 3}. Interesting problem about graphs in
which subdividing any single edge two times does not increase its dominating number
arises. What is their structure like? The class of all trees T with msd(T ) = 3 is already
characterized and the next section sums up the results from [4] and [1] on this topic.
Next we characterize all unicyclic graphs with the domination multisubdivision number
equal to 3.

For any unexplained terms and symbols see [9].
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3. TREES WITH THE MULTISUBDIVISION DOMINATION NUMBER
EQUAL TO 3

It is possible to observe that if msd(G) = 3, then G does not have a strong support
vertex, since subdividing an edge incident with a leaf and a strong support vertex two
times results in a graph with bigger domination number.

In order to describe all unicyclic graphs with msd(G) = 3, we first recall the class
of all trees with the domination multisubdivision number equal to 3.

The following constructive characterization of the family T of labeled trees T with
sd(T ) = 3 was given in [1] by Aram, Sheikholeslami and Favaron. Dettlaff, Raczek
and Topp in [4] have proven that for any tree T , msd(T ) = sd(T ). Thus, this is
also a characterization of all trees with msd(T ) = 3. In what follows we recall the
characterization given in [1].

The label of a vertex v is also called a status and is denoted by sta(v). Let T1
and T2 be the following two operations defined on a graph G.
Operation T1. Assume sta(v) = A. Then add a path (x, y, z) and the edge vx.

Let sta(x) = sta(y) = B, and sta(z) = A.
Operation T2. Assume sta(v) = B. Then add a path (x, y) and the edge vx.

Let sta(x) = B, and sta(y) = A.
Let T be the minimum family of trees obtained from P4, where the two leaves

have status A and the two support vertices have status B, by a finite sequence of
Operations T1 or T2.

If T ∈ T , we let A(T ) and B(T ) be the set of vertices of statuses A and B,
respectively, in T .

Here we a few recall important properties of trees belonging to the family T .
Observation 3.1 (Aram, Sheikholeslami, Favaron [1]). Let T ∈ T and v ∈ V (T ).
(1) If v is a leaf, then sta(v) = A.
(2) If v is a support vertex, then sta(v) = B.
(3) If sta(v) = A, then N(v) ⊆ B(T ).
(4) If sta(v) = B, then v is adjacent to exactly one vertex of A(T ) and at least one

vertex of B(T ).
(5) The distance between any two vertices in A(T ) is at least 3.

Lemma 3.2 (Aram, Sheikholeslami, Favaron [1]). If T ∈ T , then A(T ) is a γ(T )-set.
The following corollary is a consequence of the results contained in [4].

Corollary 3.3 (Dettlaff, Raczek, Topp [4]). Let T be a tree. Then

msd(T ) = 3 if and only if T ∈ T .

The private neighbourhood of a vertex u with respect to a set D ⊆ V (G), where
u ∈ D, is the set pn[u,D] = NG[u]−NG[D − {u}].
Lemma 3.4 (Aram, Sheikholeslami, Favaron [1]). Let T ∈ T and u ∈ A(T ). There is
a γ(T )-set of T , say D, such that u ∈ D and pn[u,D] = {u}.
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Lemma 3.5 (Sampathkumar, Neeralagi [12]). A vertex u ∈ V (G) is γ(G)-critical
if and only if there exists a γ(G)-set D where pn[u,D] = {u}.

Observation 3.1 altogether with Lemma 3.2, Lemma 3.4 and Lemma 3.5 imply
the following result.

Corollary 3.6. Let T ∈ T and u ∈ V (T ). Then u ∈ A(T ) if and only if

γ(T − u) < γ(T ).

4. UNICYCLIC GRAPHS WITH THE MULTISUBDIVISION DOMINATION
NUMBER EQUAL TO 3

In this section we give a constructive characterization of all unicyclic graphs with the
multisubdivision domination number equal to 3.

Let TA ⊆ T be the set of all tress T belonging to T and such that there exist
vertices u1, u2, u3, v1, v2, v3 ∈ V (T ) with the following properties:

— u1 and v1 are leaves in T with dT (u1, v1) ≥ 7;
— u2 and v2 are the support vertices in T adjacent to u1 and v1, respectively;
— u3 and v3 are adjacent to u2 and v2, respectively where d(u3) = d(v3) = 2.

See Figure 1.
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Fig. 1. A tree T ∈ TA

Denote by A the set of all unicyclic graphs G obtained from any tree T ∈ TA
by identifying: u1 with v1, u2 with v2 and u3 with v3. Denote the identified vertices
by w1, w2 and w3, respectively. Let the statuses of vertices of G correspond to the
statuses of the revelant vertices of the tree T , in addition let sta(w1) = A, sta(w2) =
sta(w3) = B. See Figure 2.

Let TB ⊆ T be the set of all tress T belonging to T and such that there exist
vertices u1, u2, v1, v2 ∈ V (T ) with the following properties:

— u1 and v1 are leaves in T with dT (u1, v1) ≥ 5;
— u2 and v2 are the support vertices adjacent to u1 and v1, respectively;
— on the (u1, v1)-path in T exists a vertex of degree greater than 2 labelled B;

See Figure 3.
Denote by B the set of all unicyclic graphs G obtained from any tree T ∈ TB by

identifying: u1 with v1 and u2 with v2. Denote the identified vertices by w1 and w2,
respectively. Let the statuses of vertices of G correspond to the statuses of the relevant
vertices of the tree T , in addition let sta(w1) = A and sta(w2) = B. See Figure 4.
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Fig. 2. A graph G obtained from the tree T ∈ TA illustrated in Figure 1
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Fig. 3. A tree T ∈ TB
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Fig. 4. A graph G obtained from the tree T ∈ TB illustrated in Figure 3

We define F0 = A ∪ B ∪ C to be the family of unicyclic graphs where A
and B are classes of graphs defined above and let C be the subclass of all cycles
Cn = (c1, c2, . . . , cn, c1) for n = 4, 7, 10, . . . . Let every vertex of Cn has status A.

Before we prove that each graph of the family F0 has the domination multisubdi-
vision number equal to 3, we formulate the properties of the family F0.
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If G ∈ F0, we let A(G) and B(G) be the set of vertices of statuses A and B,
respectively, in G.

Observation 4.1. Let G ∈ F0 and v ∈ V (G).

(1) If v is a leaf, then sta(v) = A.
(2) If v is a support vertex, then sta(v) = B.
(3) If G ∈ A ∪ B and sta(v) = A, then N(v) ⊆ B(G).
(4) If sta(v) = B, then v is adjacent to exactly one vertex of A(G) and at least one

vertex of B(G).
(5) If G ∈ A ∪ B, then d(x, y) ≥ 3 for any two vertices x, y ∈ A(G).

Lemma 4.2. If G is a graph belonging to A ∪ B, then A(G) is a γ(G)-set.

Proof. Let G be a graph belonging to A ∪ B. Then by Observation 4.1, A(G) is
a dominating set of G, so γ(G) ≤ |A(G)|.

On the other hand by Observation 4.1 (5), it is not possible for one vertex of
V (G) dominate two or more vertices of A(G). Therefore any dominating set of G
contains at least as many elements as A(G). Thus γ(G) ≥ |A(G)| and hence |A(G)| is
a γ(G)-set.

The following result is an immediate consequence of Lemmas 3.2 and 4.2.

Corollary 4.3. Let G ∈ A or G ∈ B be obtained from a tree T ∈ TA or T ∈ TB,
respectively. Then

γ(G) = γ(T )− 1.

Lemma 4.4. If G is a graph belonging to the family F0, then x ∈ A(G) if and only if

γ(G− x) < γ(G).

Proof. If G is a graph belonging to the subclass C, then the statement is easily
verifiable.

Assume first G ∈ A and let x be a vertex of V (G) − {w1, w2, w3}. Then G is
obtained from a tree T ∈ TA and x ∈ V (T ). Let DT be a γ(T −x)-set. Without loss of
generality we may assume u2, v2 ∈ DT . Then (DT − {u2, v2}) ∪ {w2} is a dominating
set of G− x of cardinality γ(T − x)− 1. Thus, γ(G− x) ≤ γ(T − x)− 1.

On the other hand, let DG be a γ(G − x)-set containing w2 and not containing
w1, w3. Such a set exists, since w1 is a leaf and w3 is not a support vertex. Then
(DG−{w2})∪{u2, v2} is a dominating set of T − x of cardinality γ(G− x) + 1. Hence
γ(G− x) = γ(T − x)− 1.

Aditionally assume x ∈ A(G) − {w1}. Then x ∈ A(T ) and by Corollary 3.6,
γ(T − x) < γ(T ). Therefore,

γ(G− x) = γ(T − x)− 1 < γ(T )− 1 = γ(G)

and hence in this situation γ(G− x) < γ(G).
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Next assume x = w1. Then by Corollary 3.6, γ(T − u1) < γ(T ). Let DT be
a γ(T − u1)-set. Without loss of generality we may assume u3, v2 ∈ DT . Then
(DT − {u3, v2}) ∪ {w3} is a dominating set of G − w1 of cardinality γ(T − u1) − 1.
Therefore we obtain that

γ(G− w1) ≤ γ(T − u1)− 1 < γ(T )− 1 = γ(G)

and hence γ(G− x) < γ(G) for every x ∈ A(G).
Thus we assume x ∈ B(G) − {w2, w3}. Then x ∈ V (T ) and by Corollary 3.6,

γ(T − x) ≥ γ(T ). Therefore,

γ(G) = γ(T )− 1 ≤ γ(T − x)− 1 = γ(G− x)

and hence in this situation γ(G− x) ≥ γ(G). Next assume x = w3. Since w3 ∈ B(T ),
Corollary 3.6 implies that γ(T ) ≤ γ(T −u3). Let DG be a γ(G−w3)-set. Without loss
of generality we may assume w2 ∈ DG. Then (DG − {w2}) ∪ {u2, v2} is a dominating
set of T − u3 of cardinality γ(G− w3) + 1. Therefore we obtain that

γ(G) + 1 = γ(T ) ≤ γ(T − u3) ≤ γ(G− w3) + 1

and hence γ(G− x) ≥ γ(G) for x = w3.
Lastly assume x = w2. Again by Corollary 3.6, γ(T ) ≤ γ(T − u2). By the con-

struction of G and Observation 4.1, w3 is adjacent to a vertex y ∈ A(G). Since
γ(G − y) < γ(G), w3 does not belong to any minimum dominating set of G − y.
Thus there exists a minimum dominating set of G, say DG, containing w3. Then
w1 ∈ DG. Therefore (DG − {w1, w3}) ∪ {u1, u3, v2} is a dominating set of T − u2 or
(DG−{w1, w3})∪{v1, v3, u2} is a dominating set of T −v2, both sets are of cardinality
γ(G− w2) + 1. Assuming the first case, we obtain that

γ(G) + 1 = γ(T ) ≤ γ(T − u2) ≤ γ(G− w2) + 1

and hence γ(G− x) ≥ γ(G) for every x ∈ B(G).
Assume now G ∈ B and let x be a vertex of V (G)− {w1, w2}. Then G is obtained

from a tree T ∈ TB and x ∈ V (T ). In a similar way as in case of G ∈ B we may justify
that γ(G− x) = γ(T − x)− 1.

Assume aditionally x ∈ A(G) − {w1}. Then x ∈ V (T ) and since x ∈ A(T ),
γ(T − x) < γ(T ). Therefore,

γ(G− x) = γ(T − x)− 1 < γ(T )− 1 = γ(G)

and hence in this situation γ(G− x) < γ(G).
Next assume x = w1. Then by Corollary 3.6, γ(T − u1) < γ(T ). Let DT be

a γ(T − u1)-set. Without loss of generality we may assume u3, v2 ∈ DT , where
u3 ∈ B(T ) and u2u3 ∈ E(T ). Then DT − {v2} is a dominating set of G − w1 of
cardinality γ(T − u1)− 1. Therefore we obtain that

γ(G− w1) ≤ γ(T − u1)− 1 < γ(T )− 1 = γ(G)

and hence γ(G− x) < γ(G) for every x ∈ A(G).
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Thus we assume x ∈ B(G) − {w2}. Then x ∈ V (T ) and by Corollary 3.6,
γ(T − x) ≥ γ(T ). Therefore,

γ(G) = γ(T )− 1 ≤ γ(T − x)− 1 = γ(G− x)

and hence in this situation γ(G− x) ≥ γ(G).
Lastly assume x = w2. Again by Corollary 3.6, γ(T ) ≤ γ(T − u2). Denote by DG

a minimum dominating set of G− w2. Then w1 ∈ DG and (DG − {w1}) ∪ {u1, v1} is
a dominating set of T − u2 of cardinality γ(G− w2) + 1. Thus we obtain that

γ(G) + 1 = γ(T ) ≤ γ(T − u2) ≤ γ(G− w2) + 1

and hence γ(G− x) ≥ γ(G) for every x ∈ B(G).

Lemma 4.5. If G is a graph belonging to the family F0, then

msd(G) = 3.

Proof. Let G be a graph belonging to the family F0. The statement is easily verifiable
when G belongs to the Subclass C of the family F0.

Now assume G belongs to the Subclass A of the family F0. Then G is obtained
from a tree T ∈ T . Suppose msd(G) 6= 3, e.g. msd(G) = k, where k ∈ {1, 2}. Then
there exists an edge e such that γ(Ge,k) ≥ γ(G) + 1. If e ∈ E(G) − {w1w2, w2w3},
then e ∈ E(T ) and Lemma 4.2 altogether with Corollary 4.3 imply that

γ(Ge,k)− 1 ≥ γ(G) = γ(T )− 1 = γ(Te,k)− 1.

Hence, γ(Ge,k) ≥ γ(Te,k). Let D1 be a γ(Te,k)-set. Then (D1−{u1, u2, v1, v2})∪{w2}
is a dominating set of Ge,k of cardinality smaller than γ(Ge,k), a contradiction. Thus
we assume that e ∈ {w1w2, w2w3}. Observe that graphs Gw1w2,k and Gw2w3,k are
isomorphic, so without loss of generality we just consider the case of subdividing the
edge w1w2. Denote by x1 and x2 the new vertices obtained by subdividing w1w2 when
k = 2. In the case when k = 1, we assume x1 does not exists, but the rest of our
reasoning is the same. Then Gw1w2,k may be obtained from Tu1u2,k by identyfing x2
with v1, u2 with v2 and u3 with v3. Without loss of generality we may assume that v2
belongs to the γ(Tu1u2,k)-set, say D′. Then D′ − {v2} is a dominating set of Gw1w2,k.
Hence by Lemma 4.2 altogether with Corollary 4.3,

γ(G) = γ(T )− 1 = γ(Tu1u2,k)− 1 ≥ γ(Gu1u2,k).

This implies that γ(G) ≥ γ(Gu1u2,k), which lead us to a contradiction with the
assumption that msd(G) 6= 3.

At last assume G belongs to the Subclass B of the family F0. Then G is obtained
from a tree T ∈ T . Again we suppose msd(G) 6= 3, e.g. msd(G) = k, where k ∈ {1, 2}.
Then there exists an edge e such that γ(Ge,k) ≥ γ(G) + 1. If e ∈ E(G)−{w1w2}, then
e ∈ E(T ) and Lemma 4.2 altogether with Corollary 4.3 imply that

γ(Ge,k)− 1 ≥ γ(G) = γ(T )− 1 = γ(Te,k)− 1.
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Hence, γ(Ge,k) ≥ γ(Te,k). Let D1 be a γ(Te,k)-set. Then (D1−{u1, u2, v1, v2})∪{w2}
is a dominating set of Ge,k of smaller cardinality than γ(Ge,k), a contradiction. Thus
we conclude that e = w1w2. Denote by x1 and x2 the new vertices obtained by
subdividing w1w2 when k = 2. In case when k = 1, we assume x1 does not exists, but
the rest of our reasoning is the same. Then Gw1w2,k may be obtained from Tu1u2,k by
identyfing x2 with v1 and u2 with v2. Since on the (u1, v1)-path in T exists a vertex of
degree greater than 2 labelled B, we may obtain a dominating set D′ such that either

– D′ is a γ(Tu1u2,k)-set such that v2 belongs to D′ and v2 does not have a private
neighbour in V (Tu1u2,k)− {v1, v2} with respect to D′, or

– D′ is a γ(Tv1v2,k)-set such that u2 belongs to D′ and u2 does not have a private
neighbour in V (Tv1v2,k)− {u1, u2} with respect to D′.

In both cases D′−{v2} is a dominating set of Gw1w2,k. Hence by Lemma 4.2 altogether
with Corollary 4.3,

γ(G) + 1 = γ(T ) = γ(Tu1u2,k) ≥ γ(Gu1u2,k) + 1.

This implies that γ(G) ≥ γ(Gu1u2,k), which lead us to a contradiction with the
assumption msd(G) 6= 3.

Now we introduce a family of unicyclic graphs F which contains all graphs of the
family F0 and graphs that can be obtained as follows. Let G0 be an element of F0.
If k is a positive integer, then Gk can be obtained recursively from Gk−1 by one of
the operations T1 or T2 described previously.

If G ∈ F , we let A(G) and B(G) be the set of vertices of statuses A and B,
respectively, in G. It is an easy observation that if G ∈ F and x ∈ B(G), then x is
adjacent to a vertex of A(G).

Lemma 4.6. Let G be a graph such that w, y, z ∈ V (G) induce a path P3 = (w, y, z)
in G, where dG(z) = 1, dG(y) = dG(w) = 2. Then

γ(G− {w, y, z}) = γ(G)− 1.

Proof. Let G,w, y, z be as in the assumption of the lemma. Denote G′ = G−{w, y, z}.
Any γ(G′)-set may be expanded to a dominating set of G by adding to it y. Thus,

γ(G) ≤ γ(G′) + 1.
On the other hand, there exists a γ(G)-set D containing y and not containing z, w.

Then D − {y} is a dominating set of G′ and hence γ(G′) ≤ γ(G)− 1.
Therefore γ(G′) = γ(G)− 1.

Lemma 4.7. If G is a graph belonging to the family F , then x ∈ A(G) if and only if

γ(G− x) < γ(G).

Proof. Let G be a graph belonging to the family F . We use the induction on the
number k of operations performed to construct the graph G. If k = 0, then G ∈ F0,
and then by Lemma 4.4 we obtain that γ(G− x) < γ(G) if and only if x ∈ A(G).
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Now assume that the result is true for every graph G′ = Gk−1 of the family F
constructed by k − 1 operations, e.g. γ(G′ − x) < γ(G′) if and only if x ∈ A(G′). Let
G = Gk be a graph of the family F constructed by k operations.

First assume that G is obtained from G′ by Operation T1. That is G is obtained
from G′ by adding a path (w, y, z) and the edge vw to a vertex v ∈ V (G′) with
sta(v) = A. Then sta(w) = sta(y) = B, and sta(z) = A. Thus, A(G) = A(G′) ∪ {z}.

By Lemma 4.6, γ(G−x) = γ(G′−x) + 1. Let x ∈ A(G). If x ∈ A(G′), then clearly
any minimum dominating set of G′ − x may be extended to a dominating set of G− x
by adding to it y. Thus,

γ(G− x) ≤ γ(G′ − x) + 1 < γ(G′) + 1 = γ(G)

and therefore γ(G− x) < γ(G). If x ∈ A(G)−A(G′), then x = z. Since γ(G′ − v) <
γ(G′), there exists a dominating set of G− z containing w and of cardinality γ(G′).
Thus, by the induction hypothesis

γ(G− z) ≤ γ(G′) = γ(G)− 1

and therefore γ(G− z) < γ(G).
Now let x /∈ A(G). Then x ∈ B(G). If x ∈ B(G′), then by Lemma 4.6, γ(G− x) =

γ(G′ − x) + 1. Thus, by the induction hypothesis

γ(G− x) = γ(G′ − x) + 1 ≥ γ(G′) + 1 = γ(G)

and therefore γ(G− x) ≥ γ(G). If x ∈ B(G)−B(G′), then x ∈ {w, y}. Assume first
x = w. Then γ(G − w) = γ(G′) + 1 = γ(G). If x = y, then the situation is similar.
Hence, if x ∈ B(G) then removing x from G will not decrease the domination number.

Assume now G is obtained from G′ by Operation T2. That is G is obtained from
G′ by adding a path (w, y) and the edge vw to a vertex v ∈ V (G′) with sta(v) = B.
Then sta(w) = B, and sta(y) = A. Thus, A(G) = A(G′) ∪ {y}.

Any minimum dominating set of G′ may be extended to a dominating set of G by
adding to it w. Thus, γ(G) ≤ γ(G′) + 1. On the other hand, suppose γ(G) = γ(G′).
Without loss of generality we assume w ∈ D and y, v /∈ D, where D is a minimum
dominating set of G. Then D−{w} would be a dominating set of G′− v of cardinality
smaller that |D|, implying that γ(G′ − v) < γ(G′), which is impossible, since by the
induction hypothesis, v ∈ B(G′). Thus, we conclude that γ(G) = γ(G′) + 1.

Let x ∈ A(G). If x ∈ A(G′), then by a similar reasoning as above we conclude that
γ(G− x) = γ(G′ − x) + 1. Hence

γ(G− x) = γ(G′ − x) + 1 < γ(G′) + 1 = γ(G)

and therefore γ(G − x) < γ(G). If x ∈ A(G) − A(G′), then x = y. Since v ∈ B(G′),
there exists a vertex u ∈ A(G′) such that uv ∈ E(G′). Moreover, since γ(G′ − u) <
γ(G′), there exists a minimum dominating set of G′ containing v, say D′. Then D′
is a dominating set of G− y of cardinality γ(G′), which implies that γ(G− y) < γ(G).

Now let x /∈ A(G). Then x ∈ B(G). If x ∈ B(G′), then by a similar reasoning as
above we conclude that γ(G− x) = γ(G′ − x) + 1. Hence

γ(G− x) = γ(G′ − x) + 1 ≥ γ(G′) + 1 = γ(G)
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and therefore γ(G − x) ≥ γ(G). If x ∈ B(G) − B(G′), then x = w. Then clearly
γ(G− w) = γ(G′) + 1 = γ(G). Hence, if x ∈ B(G) then removing x from G does not
decrease the domination number.

Lemma 4.8. If G is a graph belonging to the family F , then

msd(G) = 3.

Proof. Let G be a graph belonging to the family F . We use the induction on the
number k of operations performed to construct the graph G. If k = 0, then G ∈ F0,
and by Lemma 4.5 we obtain that msd(G) = 3.

Now assume that the result is true for every graph G′ = Gk−1 of the family F
constructed by k − 1 operations. Let G = Gk be a graph of the family F constructed
by k operations. It suffices to show that msd(G) = 3, or equivalently, γ(Ge,2) ≤ γ(G)
for any edge e ∈ E(G).

Let us start assumming that G is obtained from G′ by Operation T1. That is G is
obtained from G′ by adding a path (w, y, z) and the edge vw to a vertex v ∈ V (G′)
with sta(v) = A. Then sta(w) = sta(y) = B, and sta(z) = A.

Let e ∈ E(G). Assume additionally e ∈ E(G′). Then Lemma 4.6 implies that
γ(G′) = γ(G) − 1 and γ(G′e,2) = γ(Ge,2) − 1. Since γ(G′e,2) ≤ γ(G′), the inequality
γ(Ge,2) ≤ γ(G) easily follows. Assume now e ∈ E(G)−E(G′). Then e ∈ {vw,wy, yz}.
Observe that graphs Gvw,2, Gwy,2 and Gyz,2 are isomorphic, so it suffices to consider
the graph Gwy,2. Since v ∈ A(G), Lemma 4.7 implies that γ(G− v) < γ(G). Let D0
be a minimum dominating set of G− v. Since y is a strong support vertex in G− v,
y ∈ D0. Then D = D0 ∪ {w} is a minimum dominating set of G containing w and y.
Moreover, D is a dominating set of Gwy,2, which implies that γ(Ge,2) ≤ γ(G) for each
edge e ∈ E(G).

Now assume G is obtained from G′ by Operation T2. That is G is obtained from
G′ by adding a path (w, y) and the edge vw to a vertex v ∈ V (G′) with sta(v) = B.
Then sta(w) = B, and sta(y) = A.

Let e ∈ E(G). Assume additionally e ∈ E(G′). Then any minimum dominating
set of G′e,2 may be extended to a dominating set of Ge,2 by adding to it y. Hence,
γ(Ge,2) − 1 ≤ γ(G′e,2). Since msd(G′) = 3, γ(G′e,2) = γ(G′) and since v ∈ B(G′),
γ(G′) ≤ γ(G′ − v). Moreover, there exists a minimum dominating set of G, say D,
containing w and not containing v, y. Then D − {w} is a dominating set of G′ − v,
impying that γ(G′ − v) ≤ γ(G)− 1. Summing up,

γ(Ge,2)− 1 ≤ γ(G′e,2) = γ(G′) ≤ γ(G′ − v) ≤ γ(G)− 1.

Assume now e ∈ E(G)− E(G′). Then e ∈ {vy, yz}. Observe that graphs Gvw,2 and
Gwy,2 are isomorphic, so it suffices to consider the graph Gvw,2. Since v ∈ B(G)
there exists a vertex z ∈ A(G) such that vz ∈ E(G). Then Lemma 4.7 implies that
γ(G− z) < γ(G), so there exists a minimum dominating set of G, say D, containing v
and w. Then D is a dominating set of Gvw,2, which implies that γ(Ge,2) ≤ γ(G) for
each edge e ∈ E(G).
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Lemma 4.9. If G is unicyclic and msd(G) = 3, then G belongs to the family F .
Proof. Let G be a graph with msd(G) = 3 and let v ∈ V (G) be a leaf adjacent to
u ∈ V (G). Then γ(Guv,2) = γ(G) and thus by Lemma 4.6, γ(G − v) = γ(G) − 1.
Therefore v is γ(G)-critical. Moreover, no vertex of G is adjacent to more than one
leaf.

Let G be a unicyclic graph with msd(G) = 3 and denote by Ck = (c1, c2, . . . , ck)
the unique cycle of G. For each vertex ci, where i = 1, 2, . . . , k, denote by T (ci) the
tree rooted in ci, that is the connected subgraph containing ci and obtained from G
by deleting edges ci−1ci and cici+1 (the indices are taken modulo k and added 1, if
needed). Additionally, let h(T (ci)) be the height of T (ci). We proceed by induction on
the number vertices of G.
Case 1. If |V (T (ci))| = 1 for each i = 1, 2, . . . , k, then G is a cycle and by [4], G has
n = 4, 7, 10, . . . vertices and thus, G ∈ C ⊆ F .
Case 2. If |V (T (ci))| ≤ 2 for each i = 1, 2, . . . , k and at least one tree, say T (c1), has
exactly two vertices. If additionally |V (T (ci))| = 1 for each i = 2, 3, . . . , k, then it
is easy to check that no such a graph have the multisubdivision number equal to
three. Thus, |V (T (c1))| = 2 and |V (T (ci))| = 2 for at least one i = 2, 3, . . . , n. Then
G is a unicyclic graph such that each vertex belonging to the cycle is of degree 2 or
is a support vertex of degree 3 and at least two vertices of the cycle are of degree 3.

Denote by w1 the leaf adjacent to c1. Let T be the tree obtained from G by
removing vertices c1, w1 and attaching paths (u1, u2), (v1, v2) and edges u2c2, v2ck.
Since w1 is a leaf, there exists a minimum dominating set of G, say DG containing
c1 and not containing w1. Thus, (DG − {w1}) ∪ {u2, v2} is a dominating set of T of
cardinality γ(G) + 1. On the other hand, since v1 and u1 are of degree 1, there exists
a minimum dominating set of T , say DT , not containing u1, v1 and containing u2, v2.
Then (DT − {u2, v2}) ∪ {c1} is a dominating set of G of cardinality γ(T ) − 1. We
conclude γ(T ) = γ(G) + 1.

Now let e ∈ E(T ) ∩ E(G) and let D2 be a minimum dominating set of Ge,2
containing c1. Then (D2 − {c1}) ∪ {u2, v2} is a dominating set of Te,2. Therefore

γ(Te,2) ≤ γ(Ge,2) + 1 = γ(G) + 1 = γ(T ) (4.1)

and since subdividing an egde can not decrease the domination number of a graph,
γ(Te,2) = γ(T ). Assume e ∈ {u1u2, u2c2}. Observe that graphs Tu1u2,2 and Tu2c2,2
are isomorphic, so it suffices to consider the graph Tu2c2,2. Let D3 be a minimum
dominating set of Gc1c2,2 containing c1. Then (D3 − {c1}) ∪ {u2, v2} is a dominating
set of Tu2c2,2. Therefore

γ(Tu2c2,2) ≤ γ(Gc1c2,2) + 1 ≤ γ(G) + 1 = γ(T )

and again γ(Te,2) = γ(T ). The situation when e ∈ {v1v2, v2ck} is similar and thus
is ommited. We conclude that msd(T ) = 3. Then Corollary 3.3 implies that T ∈ T .
Since G is a unicyclic graph such that each vertex belonging to the cycle is of degree 2
or is a support vertex of degree 3 and at least two vertices of the cycle are of degree 3,
Observation 3.1 implies that on the (u1, v1)-path in T exists a vertex of degree 3
labelled B. Therefore G may be obtained from T and so G belongs the Subclass B ⊆ F0.
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Therefore we conclue that if G is a unicyclic graph with msd(G) = 3 and
|V (T (c1))| = 2, then G belongs to the family F .
Case 3. If |V (T (ci))| ≤ 3 for each i = 1, 2, . . . , k and at least one tree, say T (c1), has
exactly three vertices. If h(T (c1)) = 1, then c1 is adjacent to more than one leaf and
it is easy to check that no such a graph have the multisubdivision number equal to
three. Thus h(T (c1)) = 2.

Denote by w1 the leaf adjacent to w2 and let w2 be adjacent to c1. Let T be the
tree obtained from G by removing from G vertices c1, w2, w1 and attaching paths
(u1, u2, u3), (v1, v2, v3) and edges u3c2, v3ck. Since γ(G − w1) < γ(G), there exists
a minimum dominating set of G, say DG, containing w2 and not containing c1, w1.
Thus, (DG − {w2}) ∪ {u2, v2} is a dominating set of T of cardinality γ(G) + 1. On
the other hand, there exists a minimum dominating set of T , say DT , not containing
u1, v1, u3, v3 and containing u2, v2. Then (DT − {u2, v2}) ∪ {w2} is a dominating set
of G of cardinality γ(T )− 1. We conclude γ(T ) = γ(G) + 1.

Now let e ∈ E(T ) ∩ E(G) and let D2 be a minimum dominating set of Ge,2
containing w2. Then (D2 − {w2}) ∪ {u2, v2} is a dominating set of Te,2. Therefore

γ(Te,2) ≤ γ(Ge,2) + 1 = γ(G) + 1 = γ(T ) (4.2)

and since subdividing an egde can not decrease the domination number of a graph,
γ(Te,2) = γ(T ). Assume e ∈ {u1u2, u2u3, u3c2}. Observe that graphs Tu1u2,2,
Tu2u3,2 and Tu3c2,2 are isomorphic, so it suffices to consider the graph Tu2u3,2. Let
D3 be a minimum dominating set of Gc1w2,2 containing w2. Then c1 ∈ D3 and
(D3 − {w2, c1}) ∪ {u2, u3, v2} is a dominating set of Tu2u3,2. Therefore

γ(Tu2u3,2) ≤ γ(Gc1w2,2) + 1 ≤ γ(G) + 1 = γ(T )

and again γ(Te,2) = γ(T ). The situation when e ∈ {v1v2, v2v3, v3ck} is similar and
thus is ommited. We conclude that msd(T ) = 3. Then Corollary 3.3 implies that
T ∈ T . Therefore G may be obtained from T and so G belongs the Subclass A ⊆ F0.

We conclude that if G is a unicyclic graph with msd(G) = 3 and |V (T (c1))| = 3,
then G belongs to the family F .
Case 4. If |V (T (ci))| ≥ 4 for some i = 1, 2, . . . , k. Without loss of generality let
T (c1) has at least four vertices. Then h(T (c1)) ≥ 2. Assume the result is true for
every unicyclic graph G′ with msd(G′) = 3 and with |V (G′)| < |V (G)|. Denote by
P = (w1, w2, . . . , c1) a longest path in T (c1) starting at c1. Since G does not have
a strong support vertex, d(w2) = 2.

If d(w3) = 2, then Lemma 5.1 implies, that for G′ = G − {w1, w2, w3} we
have msd(G′) = 3. Since G′ is unicyclic and |V (G′)| < |V (G)|, the induction hy-
pothesis implies that G′ ∈ F . Consider the graph Gw2w3,2. Since msd(G) = 3,
γ(G) = γ(Gw2w3,2). Since w2 is a support vertex in Gw2w3,2, w2 belongs to a minimum
dominating set of Gw2w3,2. Without loss of generality w3 also belongs to a mini-
mum dominating set of Gw2w3,2. For these reasons there exists a minimum domi-
nating set of Gw2w3,2, say D, containing w2 and w3. Therefore D − {w2, w3} is
a dominating set of G − {w1, w2, w3, w4} = G′ − w4 of cardinality γ(G) − 2. Thus,
γ(G′ − w4) ≤ γ(G)− 2 = γ(G′)− 1. Hence w4 is a critical vetex, so w4 ∈ A(G′) and
therefore G may be obtained from G′ ∈ F by Operation T1. For this reason G ∈ F .
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Consider the situation when d(w3) > 2 and w3 is a support vertex adjacent to
the leaf z1. Denote G′ = G − {w1, w2}. Then Lemma 5.6 implies that msd(G′) = 3.
Thus by the induction hypothesis, G′ ∈ F . Let D′ be a minimum dominating set of
G′ − w3. Then z1 ∈ D′ and for this reason D′ is also a dominating set in G′. Hence
γ(G′) ≤ γ(G′ −w3) and thus w3 ∈ B(G′). Therefore G may be obtained from G′ ∈ F
by Operation T2. For this reason G ∈ F .

Now consider the situation when d(w3) > 2 and w3 is not a support vertex. Then
there exists in T (c1) a longest path P ′ = (z1, z2, w3, . . . , c1) such that z2 6= w2 and
z1 6= w1. Denote G′ = G−{w1, w2}. Then Lemma 5.4 implies that msd(G′) = 3. Thus
by the induction hypothesis, G′ ∈ F . Let D′ be a minimum dominating set of G′−w3.
Then we may assume that z2 ∈ D′ and for this reason D′ is also a dominating set
in G′. Hence γ(G′) ≤ γ(G′ −w3) and thus w3 ∈ B(G′). Therefore G may be obtained
from G′ ∈ F by Operation T2. For this reason G ∈ F .

Here we present the main result of this paper which is an immediate consequence
of Lemma 4.8 and Lemma 4.9.
Theorem 4.10. Let G be a unicyclic graph. Then msd(G) = 3 if and only if G belongs
to the family F .

5. LEMMAS USED IN THE PROOF OF THE LEMMA 4.9

In this section we present lemmas used in the proof of the Lemma 4.9.
Lemma 5.1. Let G be a graph with msd(G) = 3 and let w1, w2, w3 ∈ V (G) induce
a path P3 = (w1, w2, w3) in G, where dG(w1) = 1, dG(w2) = dG(w3) = 2. Denote
G′ = G− {w1, w2, w3}. Then

msd(G′) = 3.
Proof. Let G,w1, w2, w3 be as in the assumptions of the lemma. Denote
G′ = G− {w1, w2, w3}. Let e be any edge of G′. Then e also belongs to E(G).

Clearly, γ(G′) ≤ γ(G′e,2). Moreover, Lemma 4.6 implies that γ(G′e,2) + 1 = γ(Ge,2)
and γ(G) = γ(G′) + 1. Thus

γ(G) = γ(G′) + 1 ≤ γ(G′e,2) + 1 = γ(Ge,2). (5.1)

Since msd(G) = 3, γ(G) = γ(Ge,2) and we have equalities in the chain (5.1). Therefore
γ(G′) = γ(G′e,2) and for this reason msd(G′) = 3.

Lemma 5.2. Let G be a graph such that w1, w2, w3, z1, z2 ∈ V (G) induce a path
P5 = (w1, w2, w3, z2, z1) in G, where dG(w1) = dG(z1) = 1, dG(w2) = dG(z2) = 2 and
dG(w3) ≥ 3. Then

γ(G− {w1, w2}) = γ(G)− 1.
Proof. Let G,w1, w2, w3, z1, z2 be as in the assumption of the lemma. Denote
G′ = G− {w1, w2}.

Any γ(G′)-set may be expanded to a dominating set of G by adding to it w2. Thus,
γ(G) ≤ γ(G′) + 1.
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On the other hand, there exists a γ(G)-set D containing w2, z2 and not containing
w1, w3, z1. Then D − {w2} is a dominating set of G′ and hence γ(G′) ≤ γ(G)− 1.

Therefore γ(G′) = γ(G)− 1.

Lemma 5.3. Let G be a graph such that u, v, w, x, y, z1, z2 ∈ V (G) induce a path
P7 = (w1, w2, w3, x, y, z2, z1) in G, where dG(w1) = dG(z1) = 1, dG(w2) = dG(x) =
dG(y) = dG(z2) = 2 and dG(w3) ≥ 3. Then

γ(G− {w1, w2}) = γ(G)− 1.

Proof. Let G,w1, w2, w3, x, y, z2, z1 be as in the assumption of the lemma. Denote
G′ = G− {w1, w2}.

Any γ(G′)-set may be expanded to a dominating set of G by adding to it w2. Thus,
γ(G) ≤ γ(G′) + 1.

On the other hand, there exists a γ(G)-set D containing w2, z2 and not containing
w1, z1. To dominate x, we may assume that w3 ∈ D. Then D − {w2} is a dominating
set of G′ and hence γ(G′) ≤ γ(G)− 1.

Therefore γ(G′) = γ(G)− 1.

Lemma 5.4. Let G be a graph with msd(G) = 3 and let w1, w2, w3, z1, z2 ∈ V (G)
induce a path P5 = (w1, w2, w3, z2, z1) in G, where dG(w1) = dG(z1) = 1, dG(w2) =
dG(z2) = 2 and dG(w3) ≥ 3. Then

msd(G− {w1, w2}) = 3.

Proof. Let G,w1, w2, w3, z1, z2 be as in the assumptions of the lemma. Denote
G′ = G− {w1, w2}. Let e be any edge of G′. Then e also belongs to E(G).

Clearly, γ(G′) ≤ γ(G′e,2). If e ∈ {w3z2, z1z2}, then by Lemma 5.3, γ(G′e,2) =
γ(Ge,2)− 1. Similarly, if e /∈ {w3z2, z1z2}, then Lemma 5.2 implies the same equality.
Therefore,

γ(G) = γ(G′) + 1 ≤ γ(G′e,2) + 1 = γ(Ge,2). (5.2)

Since msd(G) = 3, γ(G) = γ(Ge,2) and we have equalities in the chain (5.2). For this
reason γ(G′) = γ(G′e,2) and hence msd(G′) = 3.

Lemma 5.5. Let G be a graph such that w1, w2, w3, z1 ∈ V (G) induce a path P4 =
(w1, w2, w3, z1) in G, where dG(w1) = dG(z1) = 1, dG(w2) = 2 and dG(w3) ≥ 3. Then

γ(G− {w1, w2}) = γ(G)− 1.

Proof. Let G,w1, w2, w3, z1 be as in the assumption of the lemma. Denote G′ =
G− {w1, w2}.

Any γ(G′)-set may be expanded to a dominating set of G by adding to it w2. Thus,
γ(G) ≤ γ(G′) + 1.

On the other hand, there exists a γ(G)-set D containing w2, w3 and not containing
w1, z1. Then D − {w2} is a dominating set of G′ and hence γ(G′) ≤ γ(G)− 1.

Therefore γ(G′) = γ(G)− 1.
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Lemma 5.6. Let G be a graph with msd(G) = 3 and let w1, w2, w3, z1 ∈ V (G) induce
a path P4 = (w1, w2, w3, z1) in G, where dG(w1) = dG(z1) = 1, dG(w2) = 2 and
dG(w3) ≥ 3. Then

msd(G− {w1, w2}) = 3.
Proof. Let G,w1, w2, w3, z1 be as in the assumptions of the lemma. Denote
G′ = G− {w1, w2} and denote by w′ a neighbour of w3 different from w2 and z1.

Now, let e be any edge of G′. Then e also belongs to E(G). Clearly, γ(G′) ≤ γ(G′e,2).
Lemma 5.5 implies that γ(G′) = γ(G) − 1 and if e 6= w3z1, then γ(G′e,2) =

γ(Ge,2)− 1.
If e = w3z1, then any γ(G′w3z1,2)-set may be expanded to a dominating set of

Gw3z1,2 by adding to it w2. Thus, γ(G′w3z1,2) ≤ γ(Gw3z1,2) − 1. On the other hand,
since γ(G) = γ(Gwww′,2), there exists a γ(G)-set D containing w2, w3, w

′ and not
containing w1, z1. Thus (D − {w2, w3}) ∪ {z′}, where z′ is the neighbour of z1 in
G′w3z1,2, is a dominating set of G′w3z1,2. Hence γ(G′w3z1,2) ≤ γ(Gw3z1,2)− 1. Therefore,
γ(G′e,2) = γ(Ge,2)− 1 for any edge e ∈ E(G′).

In summary we obain the following chain

γ(G) = γ(G′) + 1 ≤ γ(G′e,2) + 1 = γ(Ge,2). (5.3)

Since msd(G) = 3, γ(G) = γ(Ge,2) and we have equalities in the chain (5.3). In par-
ticular, γ(G′) = γ(G′e,2) implying that msd(G′) = 3.

6. DISCUSSION

In this paper, we constructively characterized all connected unicyclic graphs with the
domination multisubdivision number equal to 3. The results we obtained using the char-
acterization of trees with the domination subdivision number equal to 3 described by
Aram, Sheikholeslami and Favaron [1].

Future research on our topic could involve the following questions. Recall that for
each tree T with at least three vertices, sd(T ) = msd(T ). It would be interesting to
know if this is true also for unicyclic graphs.

Another question is whether the descibed operation applied to unicyclic graphs
described in this paper would produce classes of graphs with more than one cycle and
with the domination multisubdivision number equal to 3.

REFERENCES

[1] H. Aram, S.M. Sheikholeslami, O. Favaron, Domination subdivision number of trees,
Discrete Math. 309 (2009), 622–628.

[2] D. Avella-Alaminos, M. Dettlaff, M. Lemańska, R. Zuazua, Total domination multisub-
division number of a graph, Discuss. Math. Graph Theory 35 (2015), 315–327.

[3] S. Benecke, C. M. Mynhardt, Trees with domination subdivision number one, Australasian
J. Combin. 42 (2008), 201–209.



On domination multisubdivision number of unicyclic graphs 425

[4] M. Dettlaff, J. Raczek, J. Topp, Domination subdivision and domination multisubdivision
numbers of graphs, to appear in Discuss. Math. Graph Theory.

[5] O. Favaron, H. Karami, R. Khoeilar, S.M. Sheikholeslami, On the total domination
subdivision number in some classes of graphs, Journal od Combinatorial Optimization
20 (2010), 76–84.

[6] O. Favaron, H. Karami, S.M. Sheikholeslami, Disproof of a conjecture on the subdivision
domination number of a graph, Graphs and Combinatorics 24 (2008), 309–312.

[7] J.H. Hattingh, E.J. Joubert, M. Loizeaux, A.R. Plummer, L.C. van der Merwe, Restrained
domination in unicyclic graphs, Discuss. Math. Graph Theory 29 (2009), 71–86.

[8] T.W. Haynes, M.A. Henning, L. Hopkins, Total domination subdivision numbers of trees,
Discrete Math. 286 (2004), 195–202.

[9] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs,
Marcel Dekker Inc., New York, 1998.

[10] N.J. Rad, Characterization of total restrained domination edge critical unicyclic graphs,
Australas. J. Combin. 47 (2010), 77–82.

[11] P. Roushini Leely Pushpama, T.N.M. Malini Mai, Roman domination in unicyclic graphs,
Journal of Discrete Mathematical Sciences and Cryptography 15 (2012), 237–257.

[12] E. Sampathkumar, P.S. Neeralagi, Domination and neighbourhood critical, fixed, free,
and totally free points, Sankhyä 54 (1992), 403–407.

[13] S. Velammal, Studies in graph theory: covering, independence, domination and related
topics, Ph.D. Thesis, Manonmaniam Sundaranar University, Tirunelveli, 1997.

Joanna Raczek
joanna.raczek@pg.gda.pl

Gdansk University of Technology
Department of Technical Physics and Applied Mathematics
Narutowicza 11/12, 80–233 Gdańsk, Poland

Received: January 1, 2017.
Revised: December 23, 2017.
Accepted: January 9, 2018.


