PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic characteristics of the proton exchange membrane fuel cell module

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes a fuel cell based system and its performance. The system is based on two fuel cell units, DC/DC converter, DC/AC inverter, microprocessor control unit, load unit, bottled hydrogen supply system and a set of measurement instruments. In the study presented in the paper a dynamic response of the proton exchange membrane (PEM) fuel cell system to unit step change load as well as to periodical load changing cycles in the form of semi-sinusoidal and trapezoidal signals was investigated. The load was provided with the aid of an in-house-developed electronic load unit, which was fully PC controlled. The apparatus was commissioned by testing the steady-state operation of the module. The obtained efficiency of the fuel cell shows that the test apparatus used in the study provides data in substantial agreement with the manufacturer’s data.
Rocznik
Strony
125–--140
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Ottesen H.H.: Dynamic Performance of the Nexa Fuel Cell Power Module. Uni. Minnnesota, 2004.
  • [2] Benziger J., Chia E., Moxley J.F., Kevrekidis I.G.: The dynamic response of PEM fuel cells to change in load. Chem. Eng. Sc. 60(2005), 1743–1759.
  • [3] Benziger J.B. et al.: The stirred tank reactor polymer electrolyte membrane fuel cell. AIChe J. 50(2004), 1889–1899.
  • [4] Rodatz P., Paganelli G., Sciaretta A., Guzella L.: Optimal power management of an experimental fuel cell/supercapacitor-powered hybrid vehicle. Control Eng. Pract. 13(2005), 41–53.
  • [5] Costa R.A., Camacho J.R.: The dynamic and stead-state behaviour of a PEM fuel cell as an electric energy source. J. Power Sources 161(2006), 1176–1182.
  • [6] Yan Q., Toghiani H., Causey H.: Steady state and dynamic performance of proton exchange membrane fuel cell (PEMFCs) under various operating conditions and load changes. J. Power Sources 161(2006), 492–502.
  • [7] Thounthong P., Raël S., Davat B.: Test of a PEM fuel cell with low voltage static converter. J. Power Sources 153(2006), 145–150.
  • [8] Real A.J., Arce A., Bordons C.: Development and experimental validation of a PEM fuel cell dynamic model. J. Power Sources 173(2007), 310–324.
  • [9] Uzunoglu M., Onar O.C., Alam M.S.: Dynamic behaviour of PEM FCPPs under various load conditions and voltage stability analysis for stand-alone residential applications. J. Power Sources 168(2007), 240–250.
  • [10] Yan Y. et al.: The study on transient characteristic of proton exchange membrane fuel cell stack during dynamic loading. J. Power Sources 163(2007), 966–970.
  • [11] Chen J., Zhou B.: Diagnosis of PEM fuel cell stack dynamic behaviour. J. Power Sources 177(2008), 83–95.
  • [12] Corbo P., Migliardini F., Veneri O.: An experimental study of a PEM cell power train for urban bus application. J. Power Sources 181(2008), 363–370.
  • [13] Corbo P., Migliardini F., Veneri O.: Experimental analysis of a 20 kW PEM fuel cell system in dynamic conditions representative of automotive applications. Energ. Convers. Manage. 49(2008), 2688–2697.
  • [14] Tang Y., Yuan W., Pan M., Li Z., Chen G., Yong Li Y.: Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes. Appl. Energ. 87(2010), 1410–1417.
  • [15] Wu X., Xu H., Lu L., Fu J., Zhao H.: The study on dynamic response performance of PEMFC with RuO2_xH2O/CNTs and Pt/C composite electrode. Int. J. Hydrogen Energ. 35(2010), 2127–2133.
  • [16] Hou Y., Yang Z., Xue Fang X.: An experimental study on the dynamic process of PEM fuel cell stack voltage. Renew. Energ. 36(2011) 325–329.
  • [17] Tang Y., Yuan W., Pan M., Wan Z.: Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application. Appl. Energ. 88(2011), 68–76.
  • [18] Cho J. et al.: Analysis of transient response of a unit proton-exchange membrane fuel cell with a degraded gas diffusion layer. Int. J. Hydrogen Energ. 36(2011), 6090–6098.
  • [19] Bujlo P., Pasciak G., Chmielowiec J., Malinowski M.: Application of a polymer exchange membrane fuel cell stack as the primary energy source in a commercial uninterruptible power supply unit. J. Power Technol. 93(2013), 3, 154–160.
  • [20] Milewski J., Budzianowski W.: Recent key technical barriers in solid oxide fuel cell technology. Arch. Thermodyn. 35(2014), 1, 17–41, DOI: 10.2478/aoter-2014-0002.
  • [21] Milewski J., Bujalski W., Lewandowski J.: Thermodynamic analysis of biofuels as fuels for high temperature fuel cells. Arch. Thermodyn. 33(2012), 4, 41–65, DOI:10.2478/v10173-012-0027-7
  • [22] Kacprzak A., Kobyłecki R., Bis Z.: Clean energy from a carbon fuel cell. Arch. Thermodyn. 32(2011), 3, 145–155, DOI: 10.2478/v10173-011-0019-z
  • [23] Pinar F. J., Rastedt M., Dyck A., Wagner P.: Long-term operaion of high temperature polymer electrolyte membrane fuel cells with fuel composition switching and oxygen enrichment. Fuel Cell 18(2018), 3,https://doi.org/10.1002/fuce.201700115
  • [24] Szmyd J.S., Komatsu Y., Brus G., Ghigliazza F., Kimijima S., Ściążko A.: The effect of applied control strategy on the current-voltage correlation of a solid oxide fuel cell stack during dynamic operations. Arch. Thermodyn. 35(2014), 3, 129–143, DOI: 10.2478/aoter-2014-0025.
  • [25] Kacprzak A., Kobyłecki R., Bis Z.: The effects of operating conditions on the performance of a direct carbon fuel cell. Arch. Thermodyn. 34(2013), 4, 187–197, DOI: 10.2478/aoter-2013-0037
  • [26] Bvumbe T.J, Bujlo P, Tolj I., Mouton K., Swart G., Pasupathi S., Pollet B.G.: Review on management, mechanisms and modelling of thermal processes in PEMFC. Hydrogen and Fuel Cells, 1(2016), 1–20.
  • [27] Cieśliński J.T, Kaczmarczyk T.Z., Dawidowicz B.: Performance of the PEM fuel cell module. Part 2. Effect of excess ratio and stack temperature. J. Power Technol. 97(2017), 3, 246–251.
  • [28] Pióro D.: Introduction to thermodynamic analysis of fuel cells. TChiK 1–2(2010), 5–9 (in Polish).
  • [29] Wright S.E.: Comparison of the theoretical performance potential of fuel cells and heat engines. Renew. Energ. 29 (2004), 175–195.
  • [30] Holman J.P.: Thermodynamics. McGraw-Hill New York, 1980.
  • [31] Kordesch K., Simader G.: Fuel Cells and their Applications. VCH, Weinheim, 1996.
  • [32] Nexa Power Module User’s Manual. Ballard Power Systems, June 2003.
  • [33] Yilanci A., Ozturk H.K., Atalay O., Dincer I.: Exergy analysis of a 1.2 kW PEM fuel Cell system. In: Proc. 3rd Int. Energy, Exergy and Environmental Symp., Evora 2007.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10883473-7fda-44c7-a453-ea14ba3d3ea8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.