PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Operation tests of an engine supplied with alternative fuels, working as a distributed generation device

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This works discusses the test performance of a HONDA NHX 110 engine supplied with RON 95 engine fuel and alternative fuels, including: Compressed Natural Gas (CNG) and biogas. The tests were conducted for various ignition advance angle values. Tests and analyzes were performed on the basis of several hundred work cycles at maximum engine load on the authors’ own low capacity, dynamometer testing unit at the Faculty of Automotive and Construction Machinery Engineering. To analyze the test results in their statistical rendering, use was made of measures such as kurtosis, coefficient of variation, asymmetric coefficient, probability density function among others. The research determined the repeatability of a performed experiment and how selected operation parameters (ignition advance angle, fuel type) influence the repeatability of measurements. The use of alternative fuels to power a low-power spark-ignition combustion engine was also analyzed in this work in the context of its use as a distributed generation device, particularly in a polygeneration system. The paper also presents and analyzes toxic compound emissions accompanying the work of the engine.
Rocznik
Strony
437--445
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Vehicles, Narbutta 84, 02–524 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Vehicles, Narbutta 84, 02–524 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Vehicles, Narbutta 84, 02–524 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Vehicles, Narbutta 84, 02–524 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Vehicles, Narbutta 84, 02–524 Warsaw, Poland
Bibliografia
  • [1] CO EUR 13 CONCL 5 (2030 CLIMATE AD EERGY POLICY FRAMEWORK), Brussels, 24 October 2014.
  • [2] E. Union, Directive 2009/28/ec of the european parliament and of the council of 23 april 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/ec and 2003/30/ec, Official Journal of the European Union 5 (2009) 2009.
  • [3] E. E. Directive, Directive 2012/27/eu of the european parliament and of the council of 25 october 2012 on energy efficiency, amending directives 2009/125/ec and 2010/30/eu and repealing directives 2004/8/ec and 2006/32, Official Journal, L 315 (2012) 1–56.
  • [4] F. Martín-Martínez, A. Sánchez-Miralles, M. Rivier, C. Calvillo, Centralized vs distributed generation. a model to assess the relevance of some thermal and electric factors. application to the spanish case study., Energy.
  • [5] A. Chmielewski, R. Gumiński, J. Mączak, S. Radkowski, P. Szulim, Aspects of balanced development of res and distributed microcogeneration use in poland: Case study of a μchp with stirling engine, Renewable and Sustainable Energy Reviews 60 (2016) 930–952.
  • [6] J. Milewski, Ł. Szabłowski, J. Kuta, Control strategy for an internal combustion engine fuelled by natural gas operating in distributed generation, Energy Procedia 14 (2012) 1478–1483.
  • [7] J. Milewski, M. Wołowicz, Ł. Szabłowski, J. Kuta, Control strategy for a solid oxide fuel cell fueled by natural gas operating in distributed generation, Energy Procedia 29 (2012) 676–682.
  • [8] A. Chmielewski, R. Gumiński, J. Mączak, Selected properties of the adiabatic model of the stirling engine combined with the model of the piston-crankshaft system, in: Methods and Models in Automation and Robotics (MMAR), 2016 21st International Conference on, IEEE, 2016, pp. 543–548.
  • [9] J. R. Horne, M. Carreras-Sospedra, D. Dabdub, P. Lemar, U. Nopmongcol, T. Shah, G. Yarwood, D. Young, S. L. Shaw, E. M. Knipping, Air quality impacts of projections of natural gas-fired distributed generation, Atmospheric Environment 168 (2017) 8–22.
  • [10] A. A. Chmielewski, R. Gumiński, J. Mączak, P. Szulim, Model-based research on a micro cogeneration system with stirling engine, Journal of Power Technologies 96 (4) (2016) 295.
  • [11] J. Milewski, G. Discepoli, U. Desideri, Modeling the performance of mcfc for various fuel and oxidant compositions, International Journal of Hydrogen Energy 39 (22) (2014) 11713–11721.
  • [12] A. Chmielewski, S. Gontarz, R. Gumiński, J. Mączak, P. Szulim, Research study of the micro cogeneration system with automatic loading unit, in: Challenges in Automation, Robotics and Measurement Techniques, Springer, 2016, pp. 375–386.
  • [13] L. Szablowski, J. Milewski, J. Kuta, K. Badyda, Control strategy of a natural gas fuelled piston engine working in distributed generation system, Rynek Energii (3) (2011) 33–40.
  • [14] A. Chmielewski, R. Gumiński, J. Mączak, Selected properties of the dynamic model of the piston-crankshaft assembly in stirling engine combined with the thermodynamic submodel, International Journal of Structural Stability and Dynamics (2017) 1740009.
  • [15] J. Dong, T.-t. Feng, H.-x. Sun, H.-x. Cai, R. Li, Y. Yang, Clean distributed generation in china: Policy options and international experience, Renewable and Sustainable Energy Reviews 57 (2016) 753–764.
  • [16] A. Chmielewski, S. Gontarz, R. Gumiński, J. Mączak, P. Szulim, Research on a micro cogeneration system with an automatic loadapplying entity, in: Challenges in Automation, Robotics and Measurement Techniques, Springer, 2016, pp. 387–395.
  • [17] E. Directive, Directive 2004/8/ec of the european parliament and of the council of 11 february 2004 on the promotion of cogeneration based on a useful heat demand in the internal energy market and amending directive 92/42/eec, Official Journal of the European Union (2004) 50–60.
  • [18] C. Bae, J. Kim, Alternative fuels for internal combustion engines, Proceedings of the Combustion Institute 36 (3) (2017) 3389–3413.
  • [19] A. Chmielewski, R. Gumiński, T. Mydłowski, A. Małecki, K. Bogdziński, Research study of honda nhx 110 powered by an alternative fuel, in: 2nd International Conference on the Sustainable Energy and Environment Development – SEED’17 IOP Conference Series: Energy and Enviromental Studies [In print], 2017.
  • [20] A. Chmielewski, R. Gumiński, T. Mydłowski, A. Małecki, K. Bogdziński, Research on honda nhx 110 fueled with biogas, cng and e85, in: 2nd International Conference on the Sustainable Energy and Environment Development – SEED’17 IOP Conference Series: Energy and Enviromental Studies [In print], 2017.
  • [21] F. Yan, L. Xu, Y. Wang, Application of hydrogen enriched natural gas in spark ignition ic engines: from fundamental fuel properties to engine performances and emissions, Renewable and Sustainable Energy Reviews.
  • [22] A. Chmielewski, S. Gontarz, R. Gumiński, J. Mączak, P. Szulim, Analiza wpływu parametrów eksploatacyjnych na drgania układu mikrokogeneracyjnego, Przegląd Elektrotechniczny 92 (1) (2016) 45–53.
  • [23] A. Chmielewski, R. Gumiński, J. Mączak, P. Szulim, Badania układu mikrokogeneracyjnego z silnikiem stirlinga. część II, Rynek Energii (5) (2015) 120.
  • [24] A. Małecki, T. Mydłowski, S. Radkowski, Przegląd uniwersalnych sterowników do silników zi, ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2 (2013) 93.
  • [25] J. Dybała, T. Mydłowski, A. Małecki, K. Bogdziński, Stanowisko hamowniane do badań silników spalinowych o małych mocach, Combustion Engines 54 (3) (2015) 996–1000.
  • [26] A. Małecki, T. Mydłowski, J. Dybała, Badania wpływu zanieczyszczeń biopaliw na sprawność silnika zi, ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 3 (2014) 99.
  • [27] M. M. N. de Faria, J. P. V. M. Bueno, S. M. E. Ayad, C. R. P. Belchior, Thermodynamic simulation model for predicting the performance of spark ignition engines using biogas as fuel, Energy Conversion and Management 149 (2017) 1096–1108.
  • [28] Y.-Y. Wu, B.-C. Chen, F.-C. Hsieh, C.-T. Ke, Heat transfer model for small-scale spark-ignition engines, International Journal of Heat and Mass Transfer 52 (7) (2009) 1875–1886.
  • [29] M. M. Nunes, J. P. V. M. Bueno, S. M. E. Ayad, C. R. P. Belchior, Thermodynamic simulation model for predicting the performance of spark ignition engines using biogas as fuel, Energy Conversion and Management.
  • [30] Z. Chłopek, J. Biedrzycki, J. Lasocki, P. Wojcik, Assessment of the impact of dynamic states of an internal combustion engine on its operational properties, Eksploatacja i Niezawodność 17 (1).
  • [31] A. Matuszewska, M. Owczuk, A. Zamojska-Jaroszewicz, J. Jakubiak- Lasocka, J. Lasocki, P. Orliński, Evaluation of the biological methane potential of various feedstock for the production of biogas to supply agricultural tractors, Energy Conversion and Management 125 (2016) 309–319.
  • [32] J. Lasocki, K. Kołodziejczyk, A. Matuszewska, Laboratory-scale investigation of biogas treatment by removal of hydrogen sulfide and carbon dioxide., Polish Journal of Environmental Studies 24 (3).
  • [33] T. Rychter, A. Teodorczyk, Teoria silników tłokowych, Wydawnictwa Komunikacji i Łączności, 2006.
  • [34] W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski, Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach (2003).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1086bb46-8952-4ea4-9031-7eaa972a3cc6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.