PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stochastic models of the slow/fast type of atrioventricular nodal reentrant tachycardia and tachycardia with conduction aberration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Models are proposed to describe the heart’s action potential. A system of stochastic differential equations is used to recreate pathological behaviour in the heart such as atrioventricular nodal reentrant tachycardia (AVNRT) and also AVNRT with conduction aberration. Part of the population has abnormal accessory pathways: fast and slow. An additional pathway is not always induced, since the deterministic model is not proper due to a stochasticity in this process. Introduction of a stochastic term allows modelling a pre-excitation perturbation (such as unexpected excitation by premature contractions in atrium (PAC)) which triggers the mechanism of AVNRT. Also, a system of AVNRT with additional conduction aberration, which is a rare type of arrhythmia, is considered. The aim of this work is to propose a mathematical model superior to the deterministic one that recreates this disease better and allows understanding its mechanism and physical dependencies, which may help to propose a new therapy of AVNRT. Results are illustrated with numerical solutions.
Rocznik
Strony
429--440
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
  • Institute of Information Technology, Warsaw University of Life Sciences, Nowoursynowska 159, Building 34, 02-776 Warsaw, Poland
Bibliografia
  • [1] Brugada, J., Katritsis, D.G. and Arbelo, E. (2019). Guidelines of the European Society of Cardiology regarding diagnostics and treatment of patients with supraventricular tachycardia, Kardiologia Polska (Polish Heart Journal) 2(1): 1–74, (in Polish).
  • [2] Di Francesco, D. and Noble, D. (1985). A model of cardiac electrical activity incorporating ionic pumps and concentration changes, Philosophical Transactions of the Royal Society of London B 307(1): 353–398, DOI:10.1098/rstb.1985.0001.
  • [3] Dieci, L., Li, W. and Zhou, H. (2016). A new model for realistic random perturbations of stochastic oscillators, Journal of Differential Equations 261(4): 2502–2527, DOI: 10.1016/j.jde.2016.05.005.
  • [4] Downing, K.F., Simeone, R.H., Oster, M.F. and Farr, S.L. (2022). Critical illness among patients hospitalized with acute COVID-19 with and without congenital heart defects, Circulation 145: 1182–1184.
  • [5] Gamilov, T.M., Liang, F.Y. and Simakov, S.S. (2019). Mathematical modeling of the coronary circulation during cardiac pacing and tachycardia, Lobachevskii Journal of Mathematics 40(1): 448–458, DOI:10.1134/S1995080219040073.
  • [6] Ghorbanian, P., Ramakrishian, S.,Whitman, A. and Ashrafiuom, H. (2015). A phenomenological model of EEG based on the dynamics of a stochastic Duffing–van der Pol oscillator network, Biomedical Signal Processing and Control 15(1): 1–10, DOI:10.1016/j.bspc.2014.08.013.
  • [7] Grudziński, K. (2007). Modeling of the Electrical Activity of the Heart’s Conduction System, PhD thesis, Warsaw University of Technology, Warsaw, (in Polish).
  • [8] Henggui, Z., Zhang, P., Aslanidi, O.V., Noble, D. and Boyett, M.R. (2009). Mathematical models of the electrical action potential of Purkinje fibre cells, Philosophical Transactions of the Royal Society A 367(1): 2225–2255, DOI:10.1098/rsta.2008.0283.
  • [9] Hodgkin, A. and Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve, Journal Physiology 117(4): 500–544, DOI: 10.1113/jphysiol.1952.sp004764.
  • [10] Jackowska-Zduniak, B. and Foryś, U. (2016). Mathematical model of the atrioventricular nodal double response tachycardia and double-fire pathology, Mathematical Biosciences and Engineering 13(6): 1143–1158, DOI: 10.3934/mbe.2016035.
  • [11] Jackowska-Zduniak, B. and Foryś, U. (2018). Mathematical model of two types of atrioventricular nodal reentrant tachycardia: Slow/fast and slow/slow, in J. Awrejcewicz (Ed.), Dynamical Systems in Theoretical Perspective. DSTA 2017, Springer, Cham, pp. 169–182.
  • [12] Kaneko, Y., Nakajima, T., Iizuka, T. and Tamura, S. (2020). Atypical slow-slow atrioventricular nodal reentrant tachycardia with use of a superior slow pathway, International Heart Journal 61(2): 380–383, DOI: 10.1536/ihj.19-082.
  • [13] Katrisis, D. and Josephson, M. (2016). Electrophysiological features and therapy of atrioventricular nodal reentrant tachycardia, Arrhythmia and Electrophysiology Review 5(2): 130–135, DOI: 10.15420/aer.2016.18.2.
  • [14] Konturek, S. (2001). The Human Physiology: The Cardiovascular System, Jagiellonian University Press, Cracow.
  • [15] Kussela, T. (2004). Stochastic heart-rate model can reveal pathologic cardiac dynamics, Physical Review E 69(3): 031916–031923, DOI: 10.1103/PhysRevE.69.031916.
  • [16] Leung, H. (1998). Stochastic Hopf bifurcation in a biased van der Pol model, Physica A: Statistical Mechanics and Its Applications 254(2): 146–155.
  • [17] Li, Y., Wu, Z. and Wang, F. (2019a). Stochastic p-bifurcation in a generalized van der Pol oscillator with fractional delayed feedback excited by combined Gaussian white noise excitations, Journal of Low Frequency Noise, Vibration and Active Control 40(1): 91–103.
  • [18] Li, Y., Wu, Z. and Zhang, G. (2019b). Stochastic p-bifurcation in a bistable van der Pol oscillator with fractional time-delay feedback under Gaussian white noise excitation, Advances in Difference Equations 2019: 448, DOI:10.1186/s13662-019-2356-1.
  • [19] Małaczyńska-Rajpold, K., Błaszczyk, K. and Koźluk, E. (2012). Atrioventricular nodal reentrant tachycardia, Polski Przegląd Kardiologiczny 14(3): 196–203, (in Polish).
  • [20] Mani, B.C. and Pavri, B. (2014). Dual atrioventricular nodal pathways physiology: A review of relevant anatomy, electrophysiology, and electrocardiographic manifestations, Indian Pacing Electrophysical Journal 14(1): 12–25, DOI: 10.1016/s0972-6292(16)30711-2.
  • [21] Mobitz, W. (1924). Uber die unvollständige störung der erregungs-überleitung zwischen vorhof und kammer des menschlichen herzens, Zeitschrift für die gesamte experimentelle Medizin 41(1): 380–383, DOI: 10.1536/ihj.19-082.
  • [22] Nagumo, J., Arimoto, S. and Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon, Proceedings of the IRE 50(1): 2061–2070.
  • [23] Postnov, D., Han, S.K. and Kook, H. (1999). Synchronization of diffusively coupled oscillators near the homoclinic bifurcation, Physical Review E 60(3): 2799–2807.
  • [24] Qu, Z., Hu, G., Garfinkel, A. and Weiss, J.N. (2014). Nonlinear and stochastic dynamics in the heart, Physics Reports 543(2): 61–162, DOI:10.1016/j.physrep.2014.05.002.
  • [25] Shenghong, L., Quanxin, Z. and Zudi, L. (2018). Probability density and stochastic stability for the coupled van der Pol oscillator system, Cogent Mathematics and Statistics 5(1): 1431092, DOI: 10.1080/23311835.2018.1431092.
  • [26] Tusscher, K.H.W.J. and Panfilov, A.V. (2006). Alternans and spiral breakup in a human ventricular tissue model, American Journal of Physiology-Heart and Circulatory Physiology 291(1): H1088–H1100.
  • [27] van der Pol, B. (1926). On “relaxation-oscillations”, Philosophical Magazine and Journal of Science 7(2): 978–992.
  • [28] van der Pol, B. and van der Mark, J. (1928). The heartbeat considered as a relaxation oscillation, and an electrical model of the heart, Philosophical Magazine and Journal of Science 6(38): 763–775, DOI: 10.1080/14786441108564652.
  • [29] Zduniak, B., Bodnar, M. and Foryś, U. (2014). A modified van der Pol equation with delay in a description of the heart action, International Journal of Applied Mathematics and Computer Science 24(4): 853–863, DOI: 10.2478/amcs-2014-0063.
  • [30] Zheng, J., Skufca, J.D. and Bollt, E.M. (2013). Heart rate variability as determinism with jump stochastic parameters, Mathematical Biosciences and Engineering 10(4): 1253–64, DOI: 10.3934/mbe.2013.10.1253.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1082d09e-fdaf-4db6-bb6e-ae6652632916
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.