Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents an innovative data classification approach based on parallel computing performed on a GPGPU (General-Purpose Graphics Processing Unit). The results shown in this paper were obtained in the course of a European Commission-funded project: “Research on large-scale storage, sharing and processing of spatial laser data”, which concentrated on LIDAR data storage and sharing via databases and the application of parallel computing using nVidia CUDA technology. The paper describes the general requirements of nVidia CUDA technology application in massive LiDAR data processing. The studied point cloud data structure fulfills these requirements in most potential cases. A unique organization of the processing procedure is necessary. An innovative approach based on rapid parallel computing and analysis of each point’s normal vector to examine point cloud geometry within a classification process is described in this paper. The presented algorithm called LiMON classifies points into basic classes defined in LAS format: ground, buildings, vegetation, low points. The specific stages of the classification process are presented. The efficiency and correctness of LiMON were compared with popular program called Terrascan. The correctness of the results was tested in quantitive and qualitative ways. The test of quality was executed on specific objects, that are usually difficult for classification algorithms. The quantitive test used various environment types: forest, agricultural area, village, town. Reference clouds were obtained via two different methods: (1) automatic classification using Terrascan, (2) manually corrected clouds classified by Terrascan. The following coefficients for quantitive testing of classification correctness were calculated: Type 1 Error, Type 2 Error, Kappa, Total Error. The results shown in the paper present the use of parallel computing on a GPGPU as an attractive route for point cloud data processing.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
387--393
Opis fizyczny
Bibliogr. 19 poz., rys., wykr.
Twórcy
autor
- DEPHOS SOFTWARE LTD. 63 Rodziny Poganów St., 32-080 Zabierzów, Poland
autor
- DEPHOS SOFTWARE LTD. 63 Rodziny Poganów St., 32-080 Zabierzów, Poland
autor
- DEPHOS SOFTWARE LTD. 63 Rodziny Poganów St., 32-080 Zabierzów, Poland
autor
- DEPHOS SOFTWARE LTD. 63 Rodziny Poganów St., 32-080 Zabierzów, Poland
Bibliografia
- [1] Axelsson P.: Processing of laser scanner data - algorithms and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 1999, s. 138–147, 1999.
- [2] Axelsson P.: DEM generation from laser scanner data using adaptive TIN models. The International Archives of the Photogrammetry and Remote Sensing, 33 (B4/1), pp. 110–117, 2000.
- [3] Będkowski J., Bratuś R., Prochaska M., Rzonca A.: Use of parallel computing in mass processing of laser data. Archiwum Fotogrametrii, Kartografii i Teledetekcji 1, 45-59, Poland, 2015.
- [4] Będkowski J., Majek K., Nuechter A.: General purpose computing on graphics processing units for robotic applications. Journal of Software Engineering for Robotics, 4(1), pp. 23-33, 2013.
- [5] Borkowski A.: Filtracja danych lotniczego skaningu laserowego z wykorzystaniem metody aktywnych powierzchni. Roczniki Geomatyki, Tom III, Zeszyt 4, s. 35-42, Poland, 2005.
- [6] Jeong J., Lee I.: Classification of lidar data for generating a high-precision roadway map. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016.
- [7] Lari Z., Habib A., Kwak E.: An adaptive approach for segmentation of 3d laser point cloud. ISPRS Workshop Laser Scanning 2011 Calgary, Canada 29 – 31 August 2011.
- [8] Lu W. L., Little J. J., Sheffer A., Fu H.: Deforestation: extracting 3d bare-earth surface from airborne LiDAR data. In: Proceeding of: CRV 2008, Fifth Canadian Conference on Computer and Robot Vision, 28–30 May 2008, Windsor, Ontario, Canada, pp. 203–210, 2008.
- [9] Marmol U., Jachimski J.: A FFT based method of filtering airborne laser scanner data. Int. Archives of Photogrammetry and Remote Sensing, ISSN 1682-1750, Vol. XXXV, part B3, 2004.
- [10] Meng X., Currit N., Zhao K.: Ground filtering algorithms for airborne lidar data: a review of critical issues. Remote Sens 2010, 2, 833–860, 2010.
- [11] Niemeyer J., Rottensteiner F. Soergel U.: Contextual classification of lidar data and building object detection in urban areas. ISPRS Journal of Photogrammetry and Remote Sensing, 87(2014), pp. 152-165., 2014.
- [12] Rottensteiner F., Sohn G., Gerke M., Wegner J.D., Breitkopf U., Jung J.: Results of the ISPRS benchmark on urban object detection and 3D building reconstruction, ISPRS Journal of Photogrammetry and Remote Sensing 93 (2014) 256–271, 2014.
- [13] Silván-Cárdenas J. L.,Wang L.: A multi-resolution approach for filtering LiDAR altimetry data, ISPRS J. Photogramm. Remote Sens., vol. 61, no. 1, pp. 11–22, 2006.
- [14] Sithole, G., Vosselman, G.: Comparison of filtering algorithms. In ISPRS Commission III, Symposium 2002 September 9 - 13, 2002, Graz, Austria, 2002.
- [15] Sithole G., Vosselman G.: Report ISPRS: Comparison of filters, http://www.isprs.org/commission3/wg3, 2003.
- [16] Sithole, G., Vosselman, G.: Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing 59 (1–2), 85–101, 2004.
- [17] Terrasolid: TerraScan User’s Guide, 2006.
- [18] Ural S., Shan J.: A min-cut based filter for airborne lidar data, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016.
- [19] Zhou M., Li C. R., Ma L., Guan H. C.: Land cover classification from full-waveform lidar data based on support vector machines. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016.
Uwagi
EN
The research was carried out as part of the following European Union project: "Research on large scale storage, sharing and processing of spatial laser data" no. UDA-POIG.01.04.00-12-125/11-00.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10804f6a-9d51-4355-b3d3-d01fd8262752