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Abstract 

 

The paper presents an innovative data classification approach based on 
parallel computing performed on a GPGPU (General-Purpose Graphics 

Processing Unit). The results shown in this paper were obtained in the 

course of a European Commission-funded project: “Research on large-
scale storage, sharing and processing of spatial laser data”, which 

concentrated on LIDAR data storage and sharing via databases and the 

application of parallel computing using nVidia CUDA technology. The 
paper describes the general requirements of nVidia CUDA technology 

application in massive LiDAR data processing. The studied point cloud 

data structure fulfills these requirements in most potential cases. A unique 
organization of the processing procedure is necessary. An innovative 

approach based on rapid parallel computing and analysis of each point’s 

normal vector to examine point cloud geometry within a classification 
process is described in this paper. The presented algorithm called LiMON 

classifies points into basic classes defined in LAS format: ground, 

buildings, vegetation, low points. The specific stages of the classification 
process are presented. The efficiency and correctness of LiMON were 

compared with popular program called Terrascan. The correctness of the 

results was tested in quantitive and qualitative ways. The test of quality 
was executed on specific objects, that are usually difficult for classification 

algorithms. The quantitive test used various environment types: forest, 

agricultural area, village, town. Reference clouds were obtained via two 
different methods: (1) automatic classification using Terrascan, (2) 

manually corrected clouds classified by Terrascan. The following 

coefficients for quantitive testing of classification correctness were 
calculated: Type 1 Error, Type 2 Error, Kappa, Total Error. The results 

shown in the paper present the use of parallel computing on a GPGPU as 

an attractive route for point cloud data processing. 
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1. Introduction 
 

One of the most important elements of point cloud processing is 

classification. An innovative point cloud classification algorithm 

was proposed as part of a project run by the DEPHOS Software 

Company: “Research on large-scale storage, sharing and 

processing of spatial laser data.” The project ran in the years 2012-

2015 and was financed by the European Union. The general 

outcomes of the project were described in a paper by (Będkowski 

et al. 2015). The new approach to point cloud classification is 

based on the use of parallel computing with graphics processors as 

well as the use of advanced testing techniques of the geometry of 

the base cloud in order to assess which points belong to which 

classes in accordance with the LAS system. The algorithm used by 

DEPHOS Software is based on the following types of points: (1) 

so-called low points, (2) terrain, (3) buildings, (4) low, medium, 

and high vegetation (BĘDKOWSKI et al. 2015). evaluated the 

algorithm in terms of efficiency and output quality by comparing 

the algorithm-classified data with data classified using Terrasolid 

software as well as manual verification. 

 

2. Parallel processing and point cloud 
processing 

 

Parallel processing using graphics processors based on 

nVidia CUDA technology allows for efficient processing of 

scanning data (Będkowski et al. 2015). This paper presents the 

outcomes of the use of this technology with an array of different 

processors, with most processors experiencing significant 

improvement thanks to the use of nVidia CUDA and appropriate 

algorithm architecture. One of these algorithms, created for the 

purpose of assessing computing power in graphics processors 

designed to process point clouds, was the classification of points. 

Most analytical operations can be completed in parallel. The 

software works using commands recorded in a driving macro. 

Computations performed in the process of classification that run 

successfully in parallel mode include the loading and saving of 

LAS files, both 2D and 3D decomposition of data, calculation of 

normal vectors, identification of ground points, ground expansion, 

and the classification of buildings and vegetation.  
 

3. Existing point cloud classification 
techniques and technologies 

 

3.1. Classification methods 
 

The classification of point clouds produced by airborne laser 

scanning (ALS) is one of the most vital technical issues associated 

with this method of measurement. Ever since ALS data have 

become available, the assignment of points to specific classes has 

become a condition for their full utilization. 

A variety of different point cloud classification methods can be 

found in the research literature and these methods are 

systematized in a variety of ways (Sithole, Vosselman, 2004; 

Borkowski 2005; Ural, Shan, 2016). A classification system that 

covers almost all available methods and provides the most current 

information on the subject of classification is discussed by Meng 

et al. (2010) who place methods into several categories: 

segmentation/cluster, morphology, directorial scanning, contour, 

TIN, interpolation. The paper discusses methods in detail for the 

lower level of the classification system (key methods section): 

 Segmentation/cluster method class includes segmentation based 

on the smoothness constraint, segmentation-based classification, 

segment-based terrain interpolation. 

 Morphology class includes dual rank filter based on dilation and 

erosion, morphologic filter based on geodesic dilation, 

progressive morphologic filter. 

 Directorial canning class includes bidirectional labeling and 

hybrid multi-directional ground filtering. 

 Contour class includes active contour and active shape model as 

well as active shape model based on the energy function. 

 TIN class includes local curvatures of point measurements and 

the adaptive TIN model. 

 Interpolation class includes the following: iterative robust 

interpolation, multiscale curvature algorithm based on TPS 

interpolation, facet model, linear prediction. 

Today the subject of point cloud classification is associated with 

the identification of urban sites (Rottensteiner et al. 2014), 

data segmentation (Lari et al., 2011), and semantic data analysis 

(Niemeyer et al., 2014). The latest methods utilize neural networks 

and advanced analyses of full waveform data (Zhou et al. 2016). 

In addition, a classification method based on the use of normal 

vectors (Jeong, Lee 2016) was introduced at the 2016 ISPRS 

Congress in Prague. This method is being developed at the 

University of Seoul, independently of DEPHOS Software. 
 

3.2. Operating rules for a typical algorithm 
 

A typical point classification approach is based on several 

geometric principles resulting from the very nature of points as 

representatives of a given class. The software most commonly 

used to process scanning data is called Terrascan – made by 

Terrasolid (2016). However, the algorithm used in this software is 
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based on an iterative adjustment of the triangle network (Axelsson 

1999, 2000) and makes certain mistakes, which then have to be 

manually corrected. Typical classification errors affect points 

found on bridges, overpasses, high trees that overlook the roofs of 

all sorts of buildings and low structures, points found on the walls 

of buildings, balconies, and small elements of rooftops such as 

antennas and chimneys (Sithole, Vosselman 2002; Meng et al. 

2010).  

The classification algorithm is produced on the basis of a set of 

consecutive commands or macros. Once points in overlapping 

areas found between arrays are classified, a sequence of 

commands with parameters is used to classify erroneous points, 

terrain, built structures, and vegetation. 

 

4. Method description 
 

The main idea behind the presented method is utilizing parallel 

computing for classification purposes. A 3D point cloud consists 

of a large number of similar entities, which makes computations 

done for these entities particularly good targets for parallelization. 

The current version of the method yields a classification for the 

following classes: ground, low/med/high vegetation, buildings, 

low points. The algorithm follows these steps: 

 Normal vector calculation, 

 Height index calculation for each point,  

 Ground initialization, 

 Ground growth, 

 Building initialization, 

 Building growth, 

 Vegetation classification. 

To achieve accurate results, these steps must be followed in the 

given order. 

 

4.1. Regular grid decomposition 
 

One of the key problems in parallel computing is choosing 

a reliable method of dividing the data set into suitable subsets. 

Each subset is then used by one computation thread. Too large 

data sets tend to significantly decrease performance up to a point 

where they nullify all the advantages gained from parallelism. On 

the other hand, too small subsets may lead to a situation where 

a single computation thread will contain too little information, and 

will yield inaccurate results. 

For the task of classifying aerial 3D point clouds, we have 

chosen a modified version of the Regular Grid Decomposition 

(RGD) method described in Będkowski et al. 2013. This method 

divides 3D point clouds into N x N x N bins, where N is the 

number of bins in each direction. Each point of the cloud is 

assigned to the bin it falls into and the number of neighboring 

bins. These bins are then used for calculations related to that point. 

By changing the number of bins, we can adjust the subsets used by 

each thread. 

This approach proved to be successful for 3D point clouds 

gathered by a ground laser scanner. Aerial 3D point clouds, 

however, differ from ground point clouds in density and general 

scale of the area covered – large differences in size in each 

dimension. In order to cope with this problem, RGD was used 

instead of a constant number of bins – constant bin size in each 

dimension. 
 

4.2. Normal vector calculation 
 

In the first step of the classification process, we calculate 

a normal vector for each point. The method used is parallel 

implementation of PCA/SVD similar to the one described in 

Będkowski et al. (2013). At this point a preliminary classification 

in 3 support classes is performed: linear, planar, spherical. Vector 

calculations occur only if the number of points in the 

neighborhood exceeds a threshold value. 

 

4.3. Height index calculation 
 

In the second classification step, each point is assigned a height 

index value in range 0-1. The RGD for this calculation is done in 

2D – bins are only created in the XY plane, despite the height. 

A point is assigned a value of zero if it is the lowest point in its 

bin, and a value of one if it is the highest point. 

 

4.4. Ground initialization 
 

This step finds the “seed” points ground. The main assumption 

used herein is that the lowest local point in a given area must be 

the ground. Every point whose height index is lower than 

a threshold value is considered a seed for the ground. To avoid 

including low points, only points with normal vectors are 

considered in this step. 

 

4.5. Ground growth 
 

In the ground growth step, the ground is iteratively expanded 

basing on the nearest neighborhood of points. This is done as 

follows: 

 For each point P, we find the nearest ground point. 

 If the ground point is closer than X, we check if P lies on the 

plane created by the ground point and ground point’s normal 

vector. 

 If the condition from the previous point is met, then we check 

additional conditions such as maximum allowed height 

difference, whether P is the last reflection point, whether the 

normal vector of P is roughly similar of the direction with the 

normal vector of the ground plane. 

This step may be executed multiple times using different 

parameters as well as different numbers of iterations in order to 

analyze various types of scanned areas. 

At the end of this step, we perform a finalization of the search 

for low points. An average estimation model is created for each 

bin that includes ground. Hence, every point that lies lower than 

the model – beyond a certain threshold value – is considered a low 

point. 
 

4.6. Building initialization 
 

The building initialization step can only be done after ground 

points have been identified. This step searches the subset of planar 

points for those that meet certain conditions: 

 Are they at least H m above the ground? 

 Feature a low number of non-last reflection points in the nearest 

neighborhood. 

 Do not possess any ground points in the nearest neighborhood. 
 

4.7. Building growth 
 

Building growth uses points found in the previous step in order 

to expand buildings. As with ground growth, the algorithm 

iteratively checks certain conditions based on nearest building 

points: 

 Is there no ground under the checked point (within a given 

radius)? 

 Are there any other building points within that given radius? 

 Does the checked point fit in the plane of the nearest building 

point? 

 Is the number of non-last deflection points lower than the given 

threshold value? 

This condition is forfeited for the last few iterations to include 

the edges of buildings. 

This step ends with a special building closure sub-step that takes 

care of adding walls to the rooftops. 
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4.8. Vegetation classification 
 

Vegetation classification steps check all unclassified points and 

attempt to assign one of three vegetation classes to them. Unlike in 

the case of buildings, in this step, each positively classified point 

has to have ground points underneath. The distinction between 

low, medium, and high vegetation is made based on distance from 

the ground. The conditions that need to be checked are: 

 Does the given point have ground underneath? 

 Are there no building points within a given radius? 

 “Most” (defined by a parameter) neighbors do not fit the plane 

created by the checked point? 

 Are there vegatation points in the neighborhood? This does not 

apply to the first iteration. 

The final step is aimed at dividing points between ground and 

low vegetation and concentrates on points near the ground level. 

Flat areas are divided into sectors. For each sector, a planar model 

of low vegetation and ground is created based on already 

classified points. Unclassified points are then assigned to one of 

these classes based on the distance from these models. Each model 

has a weight assigned (parameter) that allows to choose which 

class should be favored in this step. 
 

5. Testing the algorithm 
 

Two types of tests were conducted in order to evaluate the 

studied algorithm. The first test was an efficiency test and the 

second test was a functional accuracy test, which was 

a quantitative test where appropriate coefficients were computed 

that served as indicators of agreement with data and the model 

method. In addition, qualitative analysis was used to manually 

compare selected profiles of point clouds at locations that generate 

typical classification errors. 

 

5.1. Efficiency test 
 

Terrascan software (made by Terrasolid) was used as a reference 

algorithm due to its popularity. Test data were selected in four 

distinct areas: (1) woodland areas, (2) agricultural areas, (3) rural 

built-up areas, (4) urban and industrial areas. Ten data blocks were 

prepared for each category used in the ISOK project, which is 

a project that covers all of Poland, with a point density ranging 

from 4 points per square meter in agricultural and woodland areas 

to 12 points per square meter in cities. The data were classified 

using reference software as well as the LiMON algorithm and 

processing times (without data loading times and result saving 

times) were recorded. The computer used to test classification 

times using Terrascan software included an AMD FX4300 

QuadCore 3.8 GHz processor and 8 GB of RAM. The parallel 

computing process was run on a computer equipped with an Intel 

i5 processor and an nVidia Titan graphics card with 6 GB of 

RAM. The configuration of the two computers was different for 

the processes being compared due to optimal processing 

conditions in classic array-type processing mode versus parallel 

processing mode.  

Figure 1 to 4 show the results of the efficiency test in the form 

of a dependence of processing time (in seconds) on the number of 

points in selected files belonging to specific land use categories. In 

most cases, the LiMON algorithm is characterized by shorter 

processing times than Terrascan. Yet, it is important to note that 

process optimization and the optimization of the number of 

iterations will lead to shorter classification times. 
 

5.2. Quantitative accuracy test 
 

The quantitative test consisted of a calculation of parameters 

expressing agreement between the tested point clouds and 

reference clouds. The parameters of agreement calculated in this 

case were: Type 1 Error, Type 2 Error, Total Error, and the 

Kappa Coefficient. Type 1 Error is an error where ground points 

are classified as some other type of entity. Type 2 Error is an error 

where points belonging to other entities are classified to be ground 

(Marmol, Jachimski 2004; Sithole, Vosselman, 2002, 2003). Total 

Error is calculated for every class (LU et al., 2008). Finally, the 

Kappa Coefficient serves as a parameter that quantitatively 

describes the degree of agreement between classification results 

using two or more methods (Silván-Cárdenas, Wang, 2006). 

 

 

 
 

Fig. 1.  Test results for files for agricultural areas show processing times (in seconds) 

in relation to the number of points 
 

 

 
 

Fig. 2.  Test results for files for rural areas show processing times (in seconds)  

in relation to the number of points 

 

 

 
 

Fig. 3.  Test results for files for woodland areas show processing times (in seconds) 

in relation to the number of points 

 

 

 
 

Fig. 4.  Test results for files for urban areas show processing times (in seconds)  

in relation to the number of points 
 

Tests were conducted on data samples provided by the ISOK 

project. A total of 15 data blocks with a total surface area of 1.2 km2 

were selected as the samples. Each data sample featured different 
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characteristics. Point clouds were classified using LiMON software 

(dataset no. 1) and Terrascan software. Manual corrections were 

made for dataset no. 2. No manual corrections were made for dataset 

no. 3; only Terrascan was used in the classification process. Dataset 

no. 2 was treated as a reference dataset. 

The next step consisted of 2 types of comparative analyses. The 

first analysis compared dataset no. 1 (classified using LiMON) 

with dataset no. 2 (reference data). 

Each coefficient described earlier was calculated: Type 1 Error, 

Type 2 Error, Kappa, Total Error. The resulting values are shown 

on graphs provided in the paper. Fig. 5 lists the kappa coefficients 

for each studied class in relation to the studied data samples (1 to 

15). It is readily apparent from the data that the greatest degree of 

agreement can be observed for high vegetation, while the largest 

discrepancies can be observed for buildings. Lowest mean values 

of kappa were calculated for low vegetation and the ground.  

 

 

 
 

Fig. 5. Kappa coefficients calculated for datasets no. 1 and 2 

 

 

 
 

Fig. 6.  Errors no. 1 and 2 (%) for datasets no. 1 and 2 

 

 

 
 

Fig. 7.  Total Error (%) for datasets no. 1 and 2 

 

 

 
 

Fig. 8.  Kappa coefficients calculated for datasets no. 1 and 3 

 

 
 

Fig. 9.  Type 1 Errors (%) and Type 2 Errors (%) for datasets no. 1 and 3 

 

 

 
 

Fig. 10. Total Error (%) for datasets no. 1 and 3 
 

Fig. 6 shows Errors no. 1 and 2 calculated only for the ground 

class in relation to other classes due to the definition of these 

errors, as provided earlier in the paper. 

This graph shows errors that marginally exceed 30%, except for 

sample no. 11 and 15, where a substantial number of points were 

classified as ground. 

The Total Error coefficient is shown for each studied class on 

Fig. 7. 

The results shown here confirm outcomes produced 

via calculations of Type 1 and Type 2 Errors. The above analysis 

is designed to employ a relatively broad dataset to show the 

degree of agreement between results produced by the LiMON 

algorithm and a reference algorithm.  

The second analysis concerned a practical comparison of raw 

(unadjusted) classification results produced by both LiMON and 

Terrascan software. This second analysis along with qualitative 

analysis is designed to show whether LiMON can be used in 

production at this stage of software development.  

Figures 8, 9, and 10 show the following coefficients: Kappa, 

Type 1 Error, Type 2 Error, Total Error. 

The analysis of kappa values shows significant similarity to an 

analogous result in the first analysis on datasets no. 1 and 2. 

Substantial dispersal of agreement values was observed for the 

building class. The highest dispersal range was noted for high 

vegetation, while the lowest for medium vegetation. The pattern 

followed by ground curves and low vegetation curves is quite 

similar. This diagram can be used to conclude that some buildings 

can become classified as medium vegetation and vice versa. The 

solution of this problem is provided by qualitative analysis later on 

in the paper. 

The graph for errors 1 and 2 exhibit a large disproportion, with 

many more ground points being classified erroneously as other 

classes (Type 1 Error) than vice versa. In the context of Fig. 8 

(kappa), the ground was classified in the majority of cases of 

a Type 1 Error as low vegetation. This type of conclusion may be 

drawn given the similarity of the kappa graph for ground and low 

vegetation. 

Total Error assumes higher values for the ground and low 

vegetation compared with other classes. The pattern for these two 

classes is quite similar due in part to the agreement on which point 

is really ground and which point is really low vegetation. In some 

cases, even an experienced observer may have a serious problem 

distinguishing the two in the process of manual point cloud 

classification. This also confirms the conclusion on Type 1 Errors. 
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5.3. Quality test 
 

Quality testing included an array of comparisons between cloud 

profiles classified using Terrascan and LiMON versus RGB 

clouds, which was designed to yield a more accurate 

interpretation. The work of other researchers as well as our own 

previous production work was used to determine entity type and 

configuration for entities that tend to be problematic in the 

classification process. Our own work in this area is based on 

statistical analysis – which errors need to be corrected and where 

these errors are located following automated classification using 

Terrascan. 

Four difficult types of entities were identified in the study area: 
 

Chimneys and rooftop antennas 

 

Figure 11a shows a vertical cross section of a cloud classified 

using LiMON, while Figure 11b shows the same section classified 

using Terrascan. 

 

 

a)  

b)  
 

Fig. 11.  Cross section of a single-family house – cloud classified using:  

(a) LiMON, (b) Terrascan 

 

LiMON properly classified the ridgeline of the roof and did not 

classify points (white points on the right) whose identity is 

difficult to ascertain. 

 

Roofline of a residential building 

 

 

a)  

b)  

 

Fig. 12.  Longitudinal cross section through a residential building – cloud classified 

using: (a) LiMON, (b) Terrascan 

 

 

 

Visible chimneys and antennas were classified by Terrascan as 

high vegetation, while LiMON was more accurate in classifying 

these as elements of a building or elements that cannot be 

unequivocally placed in a specific class (white points). This 

represents a major advantage of the algorithm based on the 

analysis of normal vectors. 

 

Walls of a building 

 

Another example of points that are difficult to classify is walls 

of buildings. Figures 13 and 14 indicate that the LiMON algorithm 

is more accurate in classifying points on the walls of buildings as 

building points and not high and medium vegetation points. 

 

 

a)  

b)  

 

Fig. 13.  Cross section of a residential building – cloud classified using:  

(a) LiMON, (b) Terrascan 

 

 

a)  

b)  

 

Fig. 14.   View of the wall of a residential building - cloud classified using:  

(a) LiMON, (b) Terrascan 

 

 

Roofs of low built structures such as garages 

 

Typical built structures that are not tall also constitute 

a challenge for classification algorithms. Figures 15 and 16 show 

(respectively) a longitudinal cross section and a regular cross 

section through a group of garages characterized by a height that 

is not typical for buildings (2.5 m). Terrascan classifies the roof 

areas of such low buildings are vegetation. 
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a)  

b)  

 

Fig. 15.   Longitudinal cross section of a group of garages – cloud classified using: 

(a) LiMON, (b) Terrascan. 

 

 

Trees with a flat, dense crown 

 

In the case of trees with a very dense crown, no reflections reach 

the ground, as laser impulses are not able to penetrate through to 

its surface. If these tree crowns happen to not differ substantially 

in terms of overall geometry, then neither software program yields 

the expected result, with Terrascan yielding slightly more 

erroneous classifications (Fig. 17). 

 

 

a)  

b)  

 

Fig. 16.   Section of a group of garages – cloud classified using:  

(a) LiMON, (b) Terrascan 

 

 

a)  

b)  

 

Fig. 17.   Cross section of dense tree cover – cloud classified using:  

(a) LiMON, (b) Terrascan 

 

In summary, the tests described above were able to show that 

LiMON software produced higher quality results compared with 

classification results produced by a reference software program. 

Visual control of the studied entities confirmed the results of the 

quantitative tests described in this study. However, the most 

common type of error produced by the Terrascan algorithm or the 

erroneous classification of points on roofs and walls of buildings 

as well as on garage roofs was eliminated in the algorithm used by 

LiMON thanks to the use of normal vectors. This is very 

important from the point of view of production practices in large 

surface area projects such as Poland’s national-scale ISOK 

project. It also substantially limits costs associated with the need 

to manually edit point clouds classified using the software most 

commonly used by businesses or Terrascan. 

 

6. Conclusions 
 

The paper describes an innovative approach to point cloud 

classification. A brief review of other methods is provided in the 

introduction, with the described method resting on two bases: (1) 

IT base or parallel processing on graphics cards using 

nVidia CUDA technology, (2) mathematical base or the 

innovative use of normal vectors to interpret scanned points.  

The paper presents the proposed and implemented classification 

method in comparison with the major achievements in this area of 

research. It also describes the results of three different tests used to 

test the proposed algorithm and a reference algorithm for 

comparative purposes.  

The first test was an efficiency test, which showed that the 

LiMON algorithm is a better solution than the reference algorithm, 

but without any major breakthrough. LiMON yields shorter 

processing times, but this advantage is not substantial enough to 

warrant the purchase of this particular software, as opposed to 

other types of software.  

The second test was a quantitative test of classification 

accuracy, which was conducted in the form of two comparative 

analyses based on parameters commonly used to evaluate 

classification algorithms. The first analysis was designed to 

determine the absolute accuracy of the classification with 

reference to classification data produced by Terrascan and manual 

classification. The second analysis was designed to show the 

quantitative discrepancy between results not subjected to manual 

editing and produced by both LiMON and Terrascan. 

The result of the first analysis shows a satisfactory level of 

agreement between the data produced. The largest discrepancies 

were noted for buildings (large kappa range for different 

data blocks), while relatively low discrepancies were noted for 

vegetation and the ground. This is also confirmed by the values of 

Type 1 Errors and Type 2 Errors. The calculated value of Total 

Error confirms the link between potential discrepancies between 

the ground and low resolution, which is highly likely to be true. 

One typical example is that of a plowed field (15 cm furrows) and 

a field unevenly overgrown with grass or some type of crop. This 

type of situation yields a high likelihood of error and results must 

be treated with a dose of caution regardless of the method used.   

The second analysis showed that raw classification results 

confirm the outcome above, implying that the largest amount of 

uncertainty is associated with the classification of points in the 

ground and low vegetation categories (see Total Error). A certain 

degree of differentiation appears for medium vegetation, but the 

largest discrepancy range between results for specific data blocks 

has been shown for the class designated “buildings.” These 

conclusions may be drawn most readily based on diagrams of 

kappa values.  

The third test was fairly typical and simple in terms of methods, 

but rooted in practical experience, and focused on the 

identification of places where errors tend to appear and then need 

to be manually corrected following automated classification using 

Terrascan software. The result of this test was very good for the 

new algorithm.  

Further research and more work on the new algorithm are 

needed and will focus on the problem identified in the case of high 

vegetation, which does not produce a reflection off the ground. 

Additional work will also be done on the optimization of the code 

in the pursuit of greater efficiency.  

Rapid implementation and commercialization of the results 

presented herein are planned. 

 
The research was carried out as part of the following European Union project: 

“Research on large scale storage, sharing and processing of spatial laser data” no. 

UDA-POIG.01.04.00-12-125/11-00. 

 



Measurement Automation Monitoring, Nov. 2016, no. 11, vol. 62, ISSN 2450-2855    393 
 

7. References 
 
[1] Axelsson P.: Processing of laser scanner data - algorithms and 

applications. ISPRS Journal of Photogrammetry and Remote Sensing, 

54(2), 1999, s. 138–147, 1999. 

[2] Axelsson P.: DEM generation from laser scanner data using adaptive 

TIN models. The International Archives of the Photogrammetry and 

Remote Sensing, 33 (B4/1), pp. 110–117, 2000. 

[3] Będkowski J., Bratuś R., Prochaska M., Rzonca A.: Use of parallel 

computing in mass processing of laser data. Archiwum Fotogrametrii, 

Kartografii i Teledetekcji 1, 45-59, Poland, 2015. 

[4] Będkowski J., Majek K., Nuechter A.: General purpose computing on 

graphics processing units for robotic applications. Journal of Software 

Engineering for Robotics, 4(1), pp. 23-33, 2013. 

[5] Borkowski A.: Filtracja danych lotniczego skaningu laserowego  

z wykorzystaniem metody aktywnych powierzchni. Roczniki 

Geomatyki, Tom III, Zeszyt 4, s. 35-42, Poland, 2005. 

[6] Jeong J., Lee I.: Classification of lidar data for generating a high-

precision roadway map. The International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences, 

Volume XLI-B3, 2016. 

[7] Lari Z., Habib A., Kwak E.: An adaptive approach for segmentation of 

3d laser point cloud. ISPRS Workshop Laser Scanning 2011 Calgary, 

Canada 29 – 31 August 2011. 

[8] Lu W.L., Little J.J., Sheffer A., Fu H.: Deforestation: extracting 3d 

bare-earth surface from airborne LiDAR data. In: Proceeding of: CRV 

2008, Fifth Canadian Conference on Computer and Robot Vision,  

28–30 May 2008, Windsor, Ontario, Canada, pp. 203–210, 2008. 

[9] Marmol U., Jachimski J.: A FFT based method of filtering airborne 

laser scanner data. Int. Archives of Photogrammetry and Remote 

Sensing, ISSN 1682-1750, Vol. XXXV, part B3, 2004. 

[10] Meng X., Currit N., Zhao K.: Ground filtering algorithms for airborne 

lidar data: a review of critical issues. Remote Sens 2010, 2, 833–860, 

2010. 

[11] Niemeyer J., Rottensteiner F. Soergel U.: Contextual classification of 

lidar data and building object detection in urban areas. ISPRS Journal 

of Photogrammetry and Remote Sensing, 87(2014), pp. 152-165., 

2014. 

[12] Rottensteiner F., Sohn G., Gerke M., Wegner J.D., Breitkopf U., Jung 

J.: Results of the ISPRS benchmark on urban object detection and 3D 

building reconstruction, ISPRS Journal of Photogrammetry and 

Remote Sensing 93 (2014) 256–271, 2014. 

[13] Silván-Cárdenas J. L.,Wang L.: A multi-resolution approach for 

filtering LiDAR altimetry data, ISPRS J. Photogramm. Remote Sens., 

vol. 61, no. 1, pp. 11–22, 2006. 

[14] Sithole, G., Vosselman, G.: Comparison of filtering algorithms. In 

ISPRS Commission III, Symposium 2002 September 9 - 13, 2002, 

Graz, Austria, 2002. 

[15] Sithole G., Vosselman G.: Report ISPRS: Comparison of filters, 

http://www.isprs.org/commission3/wg3, 2003. 

[16] Sithole, G., Vosselman, G.: Experimental comparison of filter 

algorithms for bare-Earth extraction from airborne laser scanning 

point clouds. ISPRS Journal of Photogrammetry and Remote Sensing 

59 (1–2), 85–101, 2004. 

[17] Terrasolid: TerraScan User’s Guide, 2006. 

[18] Ural S., Shan J.: A min-cut based filter for airborne lidar data, The 

International Archives of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences, Volume XLI-B3, 2016. 

[19] Zhou M., Li C.R., Ma L., Guan H.C.: Land cover classification from 

full-waveform lidar data based on support vector machines. The 

International Archives of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences, Volume XLI-B3, 2016. 

_____________________________________________________ 
Received: 24.08.2016     Paper reviewed     Accepted: 03.10.2016  

 

 

 

Ryszard BRATUŚ, MSc, eng. 

 

A graduate of the Faculty of Mining Surveying and 

Environmental Engineering, AGH in Cracow (1995); 

speciality: industrial surveying, geoinformatics. In 

professional and academical work develops software for 

geodesy, surveying, photogrammetry. Specialization in 

Geographic Information Systems, dedicated for 

municipalities, mining and marine industries. Interested 

in numerical processing of large datasets, spatial 

algorithms and spatial analysis. 

 

 

e-mail: ryszard.bratus@dephos.com  
 

 

Paweł MUSIALIK, MSc, eng. 

 

A  graduate  of  Faculty  of  Mechatronics,  Warsaw  

University  of  Technology (2009),  specialty:  parallel 

processing,   robotics,   artificial   intelligence,   mission   

planning   for   unmanned   vehicles.   Currently 

independent researcher. 

 

 

 

 

 

 

e-mail: pjmusialik@gmail.com  
 

 

Marcin PROCHASKA, MSc, eng. 

 

MSc Eng. degree in Geodesy and Cartography of the 

Faculty of Mining Surveying and Environmental 

Engineering, AGH in Cracow (AGH). He is founder of 

ADRAM Mapping System and DEPHOS Software Ltd., 

R&D director of DEPHOS Group. He has 20 years of 

experience in software design and development for 

mapping, digital photogrammetry and laser scanning. 

 

 

 

 

e-mail: mprochaska@dephos.com  
 

 

Antoni RZONCA, PhD, eng. 

 

PhD in technical sciences (2008), a graduate of the 

Faculty of Mining Surveying and Environmental 

Engineering, AGH in Cracow (2001), specialty: 

geoinformatics, photogrammetry and remote sensing, 

adjunct in the Department of Geoinformatics, 

Photogrammetry and Environmental Remote Sensing, 

experienced in surveying of historical sites, aerial 

mission planning and quality control of 

photogrammetric and scanning data, and development of 

software for photogrammetry and laser scanning 

 

e-mail: arzonca@dephos.com  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


