PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cyber-security for Mobile Service Robots – Challenges for Cyber-physical System Safety

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A review of the known and an indication of the new threats for cyber-physical robotic systems, caused by cybernetic attacks, serves, in this paper, as a basis for the analysis of the known methods relied upon to detect and mitigate consequences of such attacks. A particular emphasis is placed on threats specific for cyber-physical systems, as they are a feature distinguishing these systems from their traditional Information and Communication Technologies (ICT) counterparts. Based on the review of literature and own analyses, unresolved issues regarding the cyber-security of robot systems are presented and discussed.
Słowa kluczowe
Rocznik
Tom
Strony
29--36
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Institute of Control and Computation Engineering, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
  • Institute of Control and Computation Engineering, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
Bibliografia
  • [1] T. Winiarski, K. Banachowicz, and D. Seredyński, “Multi-sensory feedback control in door approaching and opening”, in Intelligent Systems ’2014. Proceedings of the 7th IEEE International Conference Intelligent Systems ISñ2014, September 24-26, 2014, Warsaw, Poland, Volume 2: Tools, Architectures, Systems, Applications, D. Filev, J. Jabłkowski, J. Kacprzyk, M. Krawczak, I. Popchev, L. Rutkowski, V. Sgurev, E. Sotirova, P. Szynkarczyk, S. Zadrozny, Eds. Springer, 2015, pp. 57–70 (doi: 10.1007/978-3-319-11310-4 6).
  • [2] A. M. Okamura, M. J. Mataric, and H. I. Christensen, “Medical and health-care robotics”, IEEE Robotics & Autom. Mag., vol. 17, no 3, pp. 26–37, 2010 (doi: 10.1109/MRA.2010.937861).
  • [3] T. Winiarski, W. Kasprzak, M. Stefańczyk, and M. Wałęcki, “Automated inspection of door parts based on fuzzy recognition system”, in Proc. 21th IEEE Int. Conf. on Methods and Models in Autom. and Robot. MMAR’2016, Międzyzdroje, Poland, 2016, pp. 478–483 (doi: 10.1109/MMAR.2016.7575182).
  • [4] M. Tenorth and M. Beetz, “KnowRob – knowledge processing for autonomous personal robots”, in Proc. IEEE/RSJ Int. Conf. on Intell. Robots and Syst. IROS 2009, St. Louis, NO, USA, 2009, pp. 4261–4266 (doi: 10.1109/IROS.2009.5354602).
  • [5] C. Zieliński et al., “Variable structure robot control systems: The RAPP approach”, Robot. and Autonom. Syst., vol. 94, pp. 226–244, 2017 (doi: 10.1016/j.robot.2017.05.002).
  • [6] W. Dudek, K. Banachowicz, W. Szynkiewicz, and T. Winiarski, “Distributed NAO robot navigation system in the hazard detection application”, in Proc. 21st Int. Conf. on Methods and Models in Autom. and Robot. MMAR 2016, Międzyzdroje, Poland, 2016, pp. 942–947 (doi: 10.1109/MMAR.2016.7575264).
  • [7] R. Doriya, P. Chakraborty, and G. Nandi, “Robot-cloud: A framework to assist heterogeneous low cost robots”, in Proc. Int. Conf. on Commun., Inform. & Comput. Technol. ICCICT 2012, Mumbai, India, 2012 (doi: 10.1109/ICCICT.2012.6398208).
  • [8] W. Dudek, W. Szynkiewicz, and T. Winiarski, “Cloud computing support for the multi-agent robot navigation system”, J. of Autom., Mob. Robot. and Intell. Syst., vol. 11, no 2, pp. 67–74, 2017 (doi: 10.14313/JAMRIS 2-2017/18).
  • [9] F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, “Internet of Things security: A survey”, J. of Netw. and Comp. Appl., vol. 88, pp. 10–28, 2017 (doi: 10.1016/j.jnca.2017.04.002).
  • [10] E. Niewiadomska-Szynkiewicz and A. Sikora, “A software tool for federated simulation of wireless sensor networks and mobile ad hoc networks”, in Applied Parallel and Scientific Computing, PARA 2010, Reykjavík, Iceland, June 6-9, 2010, Revised Selected Papers, Part I, K. J´ónasson, Ed. LNCS, vol. 7133, pp. 303–313, Berlin, Heidelberg: Springer, 2012 (doi: 10.1007/978-3-642-28151-8 30).
  • [11] A. Ahmad and M. A. Babar, “Software architectures for robotic systems: A systematic mapping study”, J. of Syst. and Software, vol. 122, pp. 16–39, 2016 (doi: 10.1016/j.jss.2016.08.039).
  • [12] F. Dietrich et al., “Dynamic distribution of robot control components under hard realtime constraints–modeling, experimental results and practical considerations”, J. of Syst. Architecture, vol. 59, no. 10, pp. 1047–1066, 2013 (doi: 10.1016/j.sysarc.2012.12.001).
  • [13] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems: the next computing revolution”, in Proc. of the 47th Design Autom. Conf., Anaheim, CA, USA, 2010, pp. 731–736 (doi: 10.1145/1837274.1837461).
  • [14] Y. Ashibani and Q. H. Mahmoud, “Cyber physical systems security: Analysis, challenges and solutions”, Computers & Secur., vol. 68, pp. 81–97, 2017 (doi: 10.1016/j.cose.2017.04.005).
  • [15] A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-physical systems security – a survey” IEEE Internet of Things J., vol. 4, no. 6, pp. 1802–1831, 2017 (doi: 10.1109/JIOT.2017.2703172).
  • [16] C. W. Axelrod, “Managing the risks of cyber-physical systems”, in Proc. IEEE Long Island Syst., Appl. and Technol. Conf. LISAT 2013, Farmingdale, NY, USA, 2013 (doi: 10.1109/LISAT.2013.6578215).
  • [17] N. Falliere, L. O. Murchu, and E. Chien, “W32.stuxnet dossier”, White paper, Symantec Corp., Security Response, vol. 5, no. 6, p. 29, 2011 [Online]. Available: https://www.symantec.com/content/ en/us/enterprise/media/security response/whitepapers/ w32 stuxnet dossier.pdf
  • [18] A. Cherepanov and R. Lipovsky, “Industroyer: Biggest threat to industrial control systems since Stuxnet”, 2017 [Online]. Available: https://www.welivesecurity.com/2017/06/12/industroyerbiggest-threat-industrial-control-systems-since-stuxnet/ (accessed 15 Nov., 2018).
  • [19] National Cybersecurity and Communications Integration Center, ICS-CERT Year in Review, 2016 [Online]. Available: https://ics-cert.us-cert.gov/sites/default/files/Annual Reports/ Year in Review FY2016 Final S508C.pdf (accessed 15 Nov., 2018).
  • [20] J. Giraldo, E. Sarkar, A. A. Cardenas, M. Maniatakos, and M. Kantarcioglu, “Security and privacy in cyber-physical systems: a survey of surveys”, IEEE Design Test, vol. 34, no. 4, pp. 7–17, 2017 (doi: 10.1109/MDAT.2017.2709310).
  • [21] G. Sabaliauskaite, G. S. Ng, J. Ruths, and A. Mathur, “A comprehensive approach, and a case study, for conducting attack detection experiments in cyber–physical systems”, Robot. and Autonom. Sys., vol. 98, pp. 174–191, 2017 (doi: 10.1016/j.robot.2017.09.018).
  • [22] National Cybersecurity and Communications Integration Center, Incident response pie charts FY2016, 2016 [Online]. Available: https://ics-cert.us-cert.gov/sites/default/files/Annual Reports/ Year in Review FY2016 IR Pie Chart S508C.pdf (accessed 15 Nov., 2018).
  • [23] “ISO/IEC JTC 1/SC 7 security functions iso/iec 10746-3” [Online]. Available: http://joaquin.net/ODP/Part3/15.html (accessed 15 Nov., 2018).
  • [24] A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards survivable cyber-physical systems”, in Proc. 28th Int. Conf. on Distrib. Comput. Syst. Worksh. ICDCS’08, Beijing, China, 2008, pp. 495–500 (doi: 101109/ICDCS.Workshops.2008.40).
  • [25] A. A. Aburomman and M. B. Ibne Reaz, “A survey of intrusion detection systems based on ensemble and hybrid classifiers”, Computers & Secur., vol. 65, pp. 135–152, 2017 (doi: 10.1016/j.cose.2016.11.004).
  • [26] P. Szynkiewicz and A. Kozakiewicz, “Design and evaluation of a system for network threat signatures generation”, J. of Computat. Sci., vol. 22, pp. 187–197, 2017 (doi: 10.1016/j.jocs.2017.05.006).
  • [27] T. A. Zimmerman, “Metrics and Key Performance Indicators for Robotic Cybersecurity Performance Analysis”, US Department of Commerce, National Institute of Standards and Technology, 2017 [Online]. Available: https://nvlpubs.nist.gov/nistpubs/ir/2017/ NIST.IR.8177.pdf
  • [28] T. P. Vuong, G. Loukas, D. Gan, and A. Bezemskij, “Decision treebased detection of denial of service and command injection attacks on robotic vehicles”, in Proc. IEEE Int. Worksh. on Inform. Forensics and Secur. WIFS2015, Rome, Italy, 2015 (doi: 10.1109/WIFS.2015.7368559).
  • [29] T. P. Vuong, G. Loukas, and D. Gan, “Performance evaluation of cyber-physical intrusion detection on a robotic vehicle”, in Proc. IEEE Int. Conf. on Comp. and Inform. Technol.; Ubiquitous Comput. and Commun.; Dependable, Auton. and Secure Comput.; Pervasive Intell. & Comput. CIT/IUCC/DASC/PICOM 2015, Liverpool, UK, 2015, pp. 2106–2113 (doi: 10.1109.CIT/IUCC/DASC/ PICOM.2015.313).
  • [30] A. M. Guerrero-Higueras, N. DeCastro-Garc´ıa, F. J. Rodr´ıguez-Lera, and V. Matell´an, “Empirical analysis of cyber-attacks to an indoor real time localization system for autonomous robots”, Computers & Secur., vol. 70, pp. 422–435, 2017 (doi: 10.1016/j.cose.2017.06.013).
  • [31] A. M. Guerrero-Higueras, N. DeCastro-Garc´ıa, and V. Matell´an, “Detection of cyber-attacks to indoor real time localization systems for autonomous robots”, Robot. and Auton. Syst., vol. 99, pp. 75–83, 2018 (doi: 10.1016/j.robot.2017.10.006).
  • [32] P. Guo, H. Kim, N. Virani, J. Xu, M. Zhu, and P. Liu, “Exploiting physical dynamics to detect actuator and sensor attacks in mobile robots”, arXiv preprint arXiv:1708.01834, 2017.
  • [33] B. Dieber et al., “Security for the robot operating system”, Robot. and Auton. Syst., vol. 98, pp. 192–203, 2017 (doi: 10.1016/j.robot.2017.09.017).
  • [34] N. Bezzo et al., “Attack resilient state estimation for autonomous robotic systems”, in Proc. IEEE/RSJ Int. Conf. on Intell. Robots and Syst. IROS 2014, Chicago, IL, USA, 2014, pp. 3692–3698 (doi: 10.1109/IROS.2014.6943080).
  • [35] R. White, G. Caiazza, H. Christensen, and A. Cortesi, “Procedurally provisioned access control for robotic systems”, in Proc. IEEE/RSJ Int. Conf. on Intell. Robots and Syst. IROS 2018, Madrid, Spain, 2018, arXiv:1810.08125 [cs.RO].
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-107f1adf-cb1c-4840-b809-c6fe5c9ae664
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.