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ABSTRACT. The assumption of the European Union Common Agricultural Policy is to 
maintain good agricultural practices for sustainability in the environment. A number of 
requirements are imposed on farmers, including the maintenance of permanent grassland, 
fallow land or crop diversification. To meet these requirements, the European Union guarantees 
subsidies, but at the same time fields must be monitored focusing on crop identification. The 
limitation of field inspection and substituting it with crop recognition using satellite images 
could increase the effectiveness of this procedure.  The  application  of  satellite  imagery  in  
automatic  detection  and  identification  of dominant crops over a large area seems to be 
technically and economically sound. The paper discusses the concept and the results of 
automatic classification based on a Random Forests classifier performed on multitemporal 
images of Sentinel-2 and Landsat-8. A test site was established in a complex agricultural 
structure with long and narrow parcels in the south-eastern part of Poland. Time-series images 
acquired during  the  growing  season  2016  were  used  for  multispectral classification in 
different configurations: for Sentinel-2 and Landsat-8 separately and for both sensors 
integrated.  Different Random Forests approaches and post-processing  methods were examined 
based on independent data from farmers’ declarations records, reaching the best accuracy of 
over 90% for crops like winter or spring cereals. Overall accuracy of the classification ranged 
from 72% to 91% depending on the classification variant. The elaborated scheme is novel in 
the context of Polish complex agricultural structure and smallholders. 
Keywords: Crop identification, multitemporal classification, Random Forests, Sentinel-2, 
Landsat-8, greening practices 

1. INTRODUCTION 
The ability to recognize and to map crops is essential to obtaining information about what and 
when is grown in predefined areas. Such information can be used for forecasting yield, for 
example, the MARS Crop Yield Forecasting System (MARS Bulletins, 2020), statistical 
analysis of crop production (Ray et al., 2013;  Łączyński, 2014), crop rotation management, 
assessment of damage to crops caused by atmospheric phenomena (Wicka, Parlińska, 2019) or 
monitoring of agricultural activities (Ji et al., 2018; Sonobe et al., 2017). The key steps related 
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to crop mapping include two elements: the identification of crop types and the delineation of 
their extent (borders). Traditional  methods  of  obtaining  this  information  are  based  on  
census and ground surveying. However, in order to standardize and automate the crop 
measurements, remote sensing techniques can be utilised. They can  provide  common  data  
collection  and  more  robust  strategies  for  information extraction. Information from remotely 
sensed data can be input into a geographic information system (GIS) such as a Land Parcel 
Identification System (LPIS) and combined with ancillary data on ownership, management 
practices and so on. Other EO data advantages in crop classification include large spatial 
coverage and timeliness. Therefore, the use of satellite images to derive information about the 
crop types is reasonable and can be used to monitor greening practices.  

Greening practices 
As part of the current agricultural policy in the EU (2014–2020), Member States are obliged to 
implement the greening payment. The basic greening requirements were established in EU 
regulation 1307/2013 of the European Parliament and the Council and implemented by 
Commission Implementing Regulation (EU) No 641/2014. These Regulations differentiate the 
greening obligations depending on the specific situation in certain regions of EU countries, 
category of farmers and type of agricultural land. Since 2015, as a rule, all the farmers applying 
for the single area payment have received a payment for agricultural practices beneficial for the 
climate and the environment, that is, the greening payment. These practices are mandatory for 
all the farmers who have applied for subsidies in all EU countries and include three 
requirements: crop diversification (CD), maintenance of permanent grassland (PG), and 
maintenance of an ecological focus area (EFA) (Regulation (EU) No 1307/2013; Devos et al. 
2017). Farmers subject to the implementation of these practices are obliged to provide the 
individual crop species and the areas of these crops, and other ecological focus area elements 
through GIS information systems (in the application for payment). Presented below are the 
general conditions of individual practices. 
Crop diversification (CD) applies to agricultural holdings with an area of more than 10 ha of 
arable land. It consists of maintaining an appropriate number of crop species and cultivation 
area on the arable land of a farm in a given year. For the purposes of diversification, a crop 
means a culture of any species, land lying fallow and grasses or other herbaceous forage. The 
number of crops is determined and the share of various crops is calculated in a certain period 
of the year in which the application for payment has been submitted. This condition results in 
the necessity to use satellite techniques in order to support the verification of greening practices 
in a large region. It is extremely important in the case of Poland because of the huge number of 
holdings (according to Paying Agency over 1.4 million), which require an evaluation of 
compliance with the crop diversification practice.  
The maintenance of permanent grassland (PG) applies to all the holdings declaring crop groups 
for direct payments. Mandatory PG practice consists of two elements, namely, the obligation to 
maintain the designated environmentally valuable permanent grasslands situated in Natura 
2000 areas at the holding level and the obligation to maintain the PG acreage unreduced in 
relation to the acreage of PG established in the reference year 2015 (Milenov et al., 2015). 
Therefore, it is important to elaborate on the method of PG detection as a crop type and it is 
considered in this study as well.  
The maintenance of ecological focus areas (EFA) applies to all the agricultural holdings with 
arable land of more than or equal to 15 ha. As a rule, farmers are obliged to ensure that at least 
5% of the arable land of the holding is an ecological focus area. The EFA elements to be verified 
constitute a long list. Some of them are point or linear elements, which do not meet the 
recognition criterion for images with a resolution of 10 m and 20 m (likewise Sentinel-2). The 
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EFA spatial elements can also constitute parcel objects, for example, nitrogen-fixing crops, 
which raises the possibility of their recognition in satellite images. The crop groups constituting 
a declaration of EFA as an area of unstable (variable and temporary) elements are marked as 
EFA1 – land lying fallow, EFA15 – areas with nitrogen-fixing crops, EFA12 – areas with short 
rotation coppice and EFA13 – afforested areas (Loudjani et al., 2015). 
On 1 June 2018, the European Commission presented legislative proposals (Proposal for a 
REGULATION (…) COM/2018/392 final) on the common agricultural policy (CAP) for the 
period 2021–27. The proposals aim to ensure that the CAP can continue to provide strong 
support for European farming, enabling prosperous rural areas and the production of high-
quality food. The proposals will also allow the CAP to make a significant contribution to 
the European Green Deal, especially with regard to the “farm to fork” strategy 
and biodiversity strategy. In order to achieve these broad goals, the Commission has set out 
nine specific objectives of the CAP: to ensure a fair income for farmers; to increase 
competitiveness; to rebalance the power in the food chain; climate change action; 
environmental care; to preserve landscapes and biodiversity; to support generational renewal; 
vibrant rural areas; to protect food and health quality. To ensure stability and predictability, 
income support will remain an essential part of the CAP. Partially, basic payments will continue 
to be based on the farm’s size in hectares. However, the future CAP wants to prioritise small 
and medium-sized farms and encourage young farmers to join the profession. This is why the 
Commission proposes a higher level of support per hectare for small and medium-sized farms. 
Mandatory requirements include crop rotation instead of crop diversification as well as 
protection of the environment and preservation of landscapes and biodiversity (Proposal for a 
REGULATION (…) COM/2018/392 final).  
Knowledge and innovation are essential for a smart, resilient and sustainable agricultural sector. 
The CAP of the future will both encourage increased investment in research and innovation and 
enable farmers and rural communities to benefit from it. Therefore, it is essential to build 
stronger agricultural knowledge and innovation systems (AKIS) to boost initiation and 
development of innovative projects, to disseminate their results and to use them as widely as 
possible. Successful AKIS strategies include four main groups of action: enhancing knowledge 
flows and strengthening links between research and practice; strengthening all the farm 
advisory services and fostering their interconnection within the AKIS; enhancing cross-
thematic and cross-border interactive innovation; supporting the digital transition in agriculture 
(EU SCAR AKIS, 2019). 
Considering the issues discussed above, it is necessary to find the optimal methods of satellite 
image processing to derive information about the different crop types. Due to cloud cover and 
the satellites revisits over Europe, the optical image acquisition is limited in a certain period of 
the year. Therefore, various scenarios of image acquisition from different optical sensors and 
their limitations should be considered. Since Sentinel-2 and Landsat-8 images could 
complement each other, they are a natural source of data for crop identification. Moreover, they 
can be processed in a common multispectral and multitemporal classification. However, this 
methodology raises some questions to which this study would like to answer. 

2. OVERVIEW OF REMOTE SENSING METHODS APPLIED FOR CROP 
IDENTIFICATION  
The most commonly used methods of automatic crop recognition include multitemporal 
classification performed with Machine Learning methods such as Random Forest (Inglada et 
al., 2015; Inglada et al., 2016; Sitokonstantinou et al., 2018: Grabska, 2017), Neural Networks 
(Kussul et al., 2015a; Shelestov et al., 2017; Stankiewicz, 2006; Asgarian et al., 2016), Support 
Vector Machine (Inglada et al., 2015; Sitokonstantinou et al., 2018; Shelestov et al., 2017; 
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Asgarian et al., 2016; Schmedtmann and Campagnolo, 2015; Yang et al., 2011). However, other 
methods are also used, such as Maximum Likelihood (Yang et al., 2011; Matton et al., 2015; 
Ianninia et al. 2013) or K-means (Matton et al., 2015). It is difficult to discuss the advantages 
of any method over the others, since the final classification result depends not only on the 
adopted processing method, but also on many other factors such as, above all, training data 
(quality and quantity), input data type (optical, radar images or their derivatives), data collection 
period, crop species as well as the agricultural structure in the research area. Although the first 
three methods, Random Forest (RF), Neural Network (NN) and Support Vector Machine 
(SVM), produce accurate results, RF requires a lower number of parameters, which minimizes 
the adjustment of algorithm variables. Also, comparing to other methods, RF is faster and more 
effective in future implementation (Belgiu et al., 2016). Therefore, it is a robust method from 
the automation perspective due to its most efficient choice of classification parameters. Pixel-
based and parcel-based classification approach has been used equally frequently. The use of a 
chosen approach depends on the availability of segmentation algorithms (Li et al., 2016) and 
the ability to generate reference borders for crops/parcels (Kussul et al., 2015a). However, the 
pixel-based approach prevails, whereas the other approach is an aggregation of the 
classification result to the parcel. Additional filtration for smoothing the image and liquidating 
accidental single pixels (Valero et al., 2016) is also often used in the post-processing phase.  
The most popular crops described in literature (Sitokonstantinou et al., 2018; Matton et al., 
2015) are the ones cultivated in the temperate climate in the northern hemisphere: cereals, 
rapeseed, maize, sugar beet and grassland. The number of recognized species is usually 5–6 
crop classes or groups and does not exceed 12–15. The more species to be identified, the more 
difficult the task is and, therefore, the lower the general classification result accuracy. It stems 
from the physical, phenological and, therefore, spectral resemblance of similar species within 
the same group (e.g., leguminous), for which it is difficult to find separate spectral signature. 
Consequently, they are ‘confused’ in the classification process, and the final classification result 
is poor. Classes representing non-agricultural areas such as water, urban areas and forests are 
also included in many studies (Skakun et al., 2016), which causes an increase in the general 
accuracy assessment and supports visualization or further analyses regarding the land cover 
itself. Earlier examples for SPOT4, Landsat8 and RapidEye (Inglada et al., 2016) for various 
research areas in the world where 5–6 crop types are identified produced very different results, 
from the best in the United States of Overall Accuracy (OA) equal to 91% to the worst for test 
areas in Madagascar or Burkina Faso, where OA varied from 30% to 50%. The commonly used 
approach to ‘crop/non-crop’ classification, that is, for two classes, resulted in accuracy at the 
average Overall Accuracy (OA) level of 85% and it refers to the possibility of distinguishing 
agricultural (arable) lands from non-agricultural lands (such as forests, water and built-up areas) 
without indicating specific crop types (Matton et al., 2015; Valero et al. 2016). It should also 
be highlighted that the number of satellite scenes and the date of their acquisition is important 
when performing a multitemporal analysis. On the one hand, there is a wish to obtain the 
maximum possible number of scenes from the whole growing season (e.g., registration of every 
possible flight) but, on the other hand, there are cloud cover limitations for optical images as 
well as equipment constraints regarding processing and archiving a huge volume of data. The 
experiments described in literature (Matton et al., 2015; Foerester et al., 2012) indicate the need 
to include at least 4 periods of the growing cycle: 1. the growing of crops on bare soil after 
tillage and sowing; 2. a higher growing rate than natural vegetation types; 3. a well-marked 
peak of green vegetation, and 4. a fast reduction of green vegetation due to harvest and/or 
senescence.  
Classification for large plots of land (>50 ha) using Landsat-8 data resulted in different accuracy 
levels depending on the classification method and agrarian system with the OA level of 60–
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90% (Kussul et al, 2015a; Shelestov et al., 2017; Ianninia et al., 2013; Kussul et al., 2015b). 
Only a few experiments conducted on the Poland territory yielded overall accuracy of 77–84%, 
whilst using SAR images mainly (Grabska, 2017; Stankiewicz, 2006). A similar agrarian 
structure to that of Poland and similar classification results were observed in Austria and 
Portugal, reaching an overall accuracy of 76–83% (Immitzer et al., 2016), 95–96% in Austria 
(Vuolo et al., 2018) and 68–84% in Portugal (Li et al., 2016). Recently, some initiatives have 
been undertaken to solve the problem of crop identification around the world. The results can 
be observed in Sen2Agri and Sen4CAP, open access software for crops classification developed 
by ESA (esa-sen2agri.org, esa-sen4cap.org) (Bontemps et al., 2020) or OneSoil Map 
(map.onesoil.ai). The map released by OneSoil is based on Sentinel-2 imageries provided by 
ESA. Using machine learning algorithms, the Belarusian start-up recognizes 19 crops with F1 
score from 0.92 to 0.96 accuracy (https://onesoil.ai/en/technologies) and calculates vegetation 
indices and nitrogen variable rates. The metrics included in the map are: parcel area, the crop 
and country crop rating. The algorithms allocate field boundaries with a 5-metre accuracy 
(Jaafar et al., 2015). These systems have limitations and can be used to give an overview of the 
distribution of crops for smallholders where the width of parcel is sometimes 10 m or less (see 
Figure 1). 
Conclusions drawn from the literature at this stage can be summarized in a few general points. 
The main point is the great importance of the input set of training (and control) data, that is 
geometry and area, the number of representatives and range of species in crop groups. The 
results found in literature differ from each other, although they are difficult to compare due to 
the differences in cultivation and agrarian characteristics of the study areas. Research on the 
effectiveness of automatic crop identification is still strongly related to the characteristics of the 
region and crops, which is why it’s results are rather unique.  

The goal and scope of research  
Hence, the scope of this study was to develop an automatic and effective (fast and qualitative) 
method of crops recognition in Poland considering the complex structure of plots using optical 
data under the greening requirements. 
The study assumed the use of variability of vegetation spectral characteristics over time 
registered on optical data to distinguish crop types. The aim of the study was to indicate the 
usefulness of Sentinel-2 (S2) and Landsat-8 (L8) satellite data as a source of data for automatic 
identification of the selected crops in Poland. Within the established experiments, the accuracy 
of the results of the multitemporal classification was analysed based on the Random Forests 
algorithm in various input data configurations, that is, multispectral images from the Sentinel-
2 sensor, multispectral images from the Landsat-8 sensor and multispectral images acquired 
from both instruments. The elaborated scheme is novel in the context of polish complex 
agricultural structure: compact, narrow parcels and smallholders. The study was conducted to 
answer the following questions: 

⋅ Is the time-series classification based on the data from only one sensor sufficient and 
what level of accuracy does it ensure compared to the multi-sensor classification 
combined with S-2 and L-8 in the context of the Polish agrarian structure? 

⋅ Is the configuration of the crop types to be classified important for the results, and if so, 
on what level? Is it possible to detect dominant crops only or minority (poorly 
represented) crops as well? 

⋅ How accurately can different crop groups be identified using pixel-based approach? 
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3. METHODS AND MATERIALS 

3.1  Area description and crop statistics 
The Lublin Upland was chosen to test and perform the experiment. It is a very agricultural area 
with loess valleys as the dominant geomorphologic forms. Agriculture is well-developed, as 
fertile mould soil is located there. Crops of wheat, hop and sugar beet dominate in the Lublin 
Upland. The region is a leading producer of soft fruits. Small individual and private farms 
dominate in this area, while the number of large-scale farms is non-significant. Compared to 
other Polish regions, the area of the parcels is rather small (<1 ha) and farms are fragmented 
(Figure 1). What should be mentioned here is the distinctive nature of the agrarian structure in 
Poland, which has an impact on the monitoring of greening practices. There are two main issues: 
1. the parcels size and 2. the dominant crop groups. According to the Paying Agency in Poland, 
the average agricultural parcel size is rather small (approx. 1.5 ha). The average size of 
agricultural land in a single farm in Poland is approximately 10 ha and varies from 4 ha to 30 
ha or more depending on the province (Notice No. 1, 2019). The area of agricultural land per 
farm is on the increase, having grown from 9.9 ha to 10.9 ha in the last 10 years. On average, 
one farm consists of 10 agricultural parcels growing an average of 5 crops (Figure 1). The 
diversification of crops on the farm is high and the probability of monoculture is fairly low 
(Krzyżanowski, 2018). It can be expected that the diversification rate will be high. Another 
vital issue is the dominant kinds of crops making up 95% of the agricultural land surface. There 
are 8 main crops, each of which exceeds 1% of the total agricultural area in Poland. These 
groups (Table 2) were considered the main crop groups and were used as a basis for crop 
identification using satellite images. In addition, in the study, a group of less numerous crops 
(i.e., ecological focus areas) was taken into account under the greenings requirements. 

   
Figure. 1. Example of typical farm and parcels pattern for the study area. In red colour, there are 

parcels belonging to one farm. On left hand side, the localisation of test area in Poland. 

3.2  Data used in experiments: satellite scenes and LPIS 
Satellite scenes and the Land Parcel Identification System (LPIS) data from 2016 were used to 
perform the experiment. According to satellite data, Sentinel-2 (Level 1C data, all granules that 
at least partially cover test areas plus its metadata and cloud masks) and Landsat-8 (OLI, all 
products that at least partially cover test areas, as a supplementary dataset to Sentinel-2) were 
used. The images were acquired in 2016, from March to September. Table 1 presents the dates 
when satellite scenes were acquired referring to the period of the season. All available images 
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without cloud cover for this study area were used, 10 images of S2 and 6 images of L8 in total 
(Table 1). 

Table 1. Dataset of S2 and L8 used for classification in correlation with growing stages 

Period S2 scenes dates [2016] L8 scenes dates [2016] 
  19.03 
  2.04 
 19.04  

Spring 
27.04  

 4.05 
 10.05  
 20.05  
 27.05  

Summer 

 5.06 
16.06  
29.06  
26.07  

  08.08 
Autumn 25.08  

 04.09  

An LPIS is an information system based on agricultural plots used to control subsidies made 
under the common agricultural policy. The data kept within LPIS databases concerns the 
location, geometry and the type of crop, which is declared by farmers. These crop declarations 
are reference data in vector layers as a whole parcel or part of the parcel. Each crop is associated 
with the so-called crop dictionary,  which  serves  to  define  whether  a  given  crop  constitutes  
arable  land,  permanent grassland, a perennial crop, short rotation coppice or an afforested area. 
These crops were used to create the so-called crop key (Table 2) to establish test data for training 
and for classification quality assessment. Nearly 240,000 crop parcels were derived from LPIS 
(updated during the campaign in 2016) in the test area, whereof more than 30,000 parcels were 
used in the process of classification (Table 2). LPIS is a system that updates on a regular basis, 
which allowed to select all the needed parcels automatically using SQL and prepare for tests 
with any manual intervention. Parcels with the largest acreage for a given crop were used as 
models for training, with the sum of area, which constituted at least 1% of the entire crop 
growing in the test area. The parcels for which the area was not less than 0.5 ha, were used for 
control and classification assessment. The remaining plots with area less than 0.5 ha were not 
used in the evaluation. Since acreage of the parcels varies strongly, hence, the imbalance in the 
numbers of parcels and training area between the particular crops.  
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Table 2. The crop types and classes used for Random Forests classification 

Crop 
group 

Greening 
practice 

Crop name  
(by LPIS) 

Class 
No. 

Total 
number 

of 
parcels 

Number of 
training 
parcels 

Training areas  
[% of crops 

area] 

dominant 

PG -  
permanent 
grassland 

permanent 
grassland 1 412 15 4 

CD -  
crop 

diversification 

corn 2 1495 15 5 
rapeseed 3 2879 26 4 

spring cereals 4 5581 58 4 
winter cereals 5 11547 53 3 

potatoes 6 120 19 16 
beets 7 194 19 10 

EFA1 -  
fallow land 

bare soil,  
green cover 8 909 7 20 

non-
dominant 

EFA12 -  
short rotation 

coppice 

willow 
9 5 3 24 poplar 

birch silver 

EFA13 -  
wooded area 

forest 
nurseries 

10 85 6 18 
forest on 

arable land 

EFA15 -  
N-fixing crops 

lupina 11 1666 18 7 
faba bean 12 1845 15 5 

alfalfa/lucerne 13 933 8 6 
pea 14 2357 14 1 

lentil 15 3 2 40 
clover spp. 16 1396 12 1 

soybean 17 1328 13 5 
field bean 18 36 8 6 

common birds' 
foot 19 11 6 1 

sum 32782 314 5 

3.3  Methods of data processing 

3.3.1. Crops and class setting 
Crops used in the study have a total area of 94% of all the agriculture parcels (based on LPIS 
data). The remaining area (6%) is covered by minor crops (e.g., vegetables) occurring on small 
and scattered plots, which are excluded from the classification process. The statistics from LPIS 
show a wide diversity in parcel areas, which has an essential impact on the level of difficulty in 
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classification implementations. It was decided to apply common multitemporal classification 
for all the crops as a single strategy. For this purpose, different Random Forests approaches 
were employed using various training datasets. This study used dominant crops for the research 
area such as permanent grassland (PG), rapeseed, winter and spring cereals, beetroots, maize, 
potatoes and fallow land. All EFAs such as EFA1 (fallow land), EFA12 (short rotation coppice), 
EFA13 (wooded area) and EFA15 (N-fixing crops) as separate classes were also considered in 
the detection process. The final crop types with statistics are presented in Table 2. Since 
different crops have different representation in the field, the training areas vary from 1% to 16% 
of particular crop area. There are a few exemptions, that is, EFA1, EFA12, EFA13 and EFA15 
(lentil) where training areas vary between 18% and 40%. The reason is the limitation in parcel 
numbers and difficulties with finding a good representation. EFA1 – a lot of small parcels 
(sometimes with green cover), EFA12 – not very popular, EFA13 – narrow and elongated 
parcels (1–20 m width) along the edge of the forest. EFA15 – N-fixing crops are 26 species on 
the list (of Paying Agency) and only a few occur in the study area. Moreover, EFA15 are not 
only specific species but crop mixtures as well.  
The vector data constituting training areas refer to parcel borders with a surface area ranging 
from 0.5 ha (majority) to the largest crop area of up to 20 ha (just a few within the research 
area). For the training stage, around 1% of parcels were used, but no more than 250 ha for each 
crop. Using SQL, around 50–60 parcels with the largest area were selected but with limitation 
of the minimum area at 0.5 ha level. Hence, some crops (e.g., class no. 8, 9, 10) are not well 
represented by parcel numbers. As a result, the following two vector datasets were obtained:  

1. for dominant crops, that is, permanent grassland (class no. 1), 6 main crops (classes no. 
2–7) and fallow land (class no. 8); in total 8 classes; 

2. for minority crops, that is, EFA12 (class no. 9), EFA13 (class no. 10) and EFA15 
(classes no. 11–19) giving 11 classes in total. 

These two sets constituted input training data to the model: as two separate sets of crops (8 or 
11 classes) and as one training set for all the crops (19 classes), and were used for different 
classification options on images acquired by L8 and S2. Because of the heterogeneity of border 
pixels, the reduction of parcel area (polygon) was implemented using an inner buffer of 10 m 
(the size of 1 pixel) set aside from the external border. This procedure was not applicable to 
EFA classes as the size of many parcels for these classes was too narrow (originally 2–3 pixel 
size). Finally, 16 variants of classification were performed (Table 3), including per-pixel and 
per-parcel validation approaches. 
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Table 3. Performed variants of RF classification and validation, where:  
pix – pixel-based validation, parcel – per-parcel validation approach 

Variant Satellite Classes set Approach for validation 
1. S2 19 classes pix 
2. S2 19 classes parcel 
3. S2 8 classes pix 
4. S2 8 classes parcel 
5. L8 19 classes pix 
6. L8 19 classes parcel 
7. L8 8 classes pix 
8. L8 8 classes parcel 
9. L8 11(EFA) classes pix 

10. L8 11(EFA) classes parcel 
11. S2+L8 19 classes pix 
12. S2+L8 19 classes parcel 
13. S2+L8 8 classes pix 
14. S2+L8 8 classes parcel 
15. S2+L8 11 (EFA)  classes pix 
16. S2+L8 11(EFA) classes parcel 

3.3.2. Random Forests algorithm and data processing 
A literature review (see section 2) and preliminary tests helped to consider and finally to select 
the most appropriate method of classification. The Random Forests (RF) classifier is one of the 
machine learning approaches in remote sensing image processing and it was chosen to perform 
crops classification in this study. The RF classifier can be used to obtain spatial information on 
crops represented by the variation of training data ensuring a high quality of results (Inglada et 
al., 2015; Inglada et al., 2016; Shelestov et al., 2017). Random Forests algorithm (Breiman, 
Cutler, 2019) implemented in En-MAP Box software (van der Linden et al., 2015) has been 
used. RF is a fast and stable algorithm for a considerable dataset to be classified and is 
insensitive to a small and diverse number of samples for large sets of data for classification 
(Belgiu, Dragut, 2016). It was also one of the reasons to choose RF as an algorithm for 
classification. It was used in this study to perform time-series crops classification based on 
Landsat-8 (L8) and Sentinel-2 (S2) data in different variants (Table 3). In order to get reliable 
spatial information for crop diversification in a fragmented parcel area, fine spatial resolution 
data was used with 10–20 m pixel size obtained from the Sentinel-2 platform (10 bands: B02-
B08, B08a, B11, B12) and from Landsat-8 (6 bands: 2–7 and 1 panchromatic). The  images  
from  both  S2  and  L8  sensors  were  subjected  to  pre-processing  including atmospheric 
correction, reflectance calculation and sharpening to 10 m pixel size of Sentinel-2 and 15 m of 
Landsat-8. Next, all the resample bands were stacked into single (multitemporal and multilayer) 
files consisting of 100 layers for Sentinel-2, 30 layers for Landsat-8 and 130 layers for S2 and 
L8 together. Subsequently, the RF classifier implemented in En-MAP Box software was run 
using prepared training datasets. Results of the RF classification process include a model for 
decision tree parameterization, an analysis of variable importance and a raster image as the 
output. The classification parameters are as follows: class numbers – n (n = 19, 8 or 9), training 
areas – at least 1 for each class, numbers of trees – 100, numbers of features – square root of all 
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features, impurity function – Gini Coefficient, minimum number of samples in node – 1, 
minimum impurity – 0.00. The next stage involved image post-processing including majority 
filtration giving pixel-crop map and zonal statistics for the dominant class value within a single 
parcel resulting in a parcel-crop map. Following statistical validation, the results were assessed 
using the control dataset derived from the LPIS (Figure 2). 

 
Figure 2. Scheme of RF classification and evaluation 

The spatial distribution of crops was evaluated using the methodology adopted from literature 
(Congalton, Green, 2009). Both approaches (per-pixel and per-parcel) in each variant of 
classification were assessed using the following statistical parameters: CE (commission errors), 
OE (omission errors), PA (producer’s accuracy), UA (user’s accuracy) and the general 
parameters OA (overall accuracy, Ω - omega), F1 and K (kappa). The interpretation of these 
parameters, their formula and usability are described in Congalton and Green (2009) and 
Lillesand et al. (2014). The UA coefficient indicates the probability of a pixel classified into a 
given category actually representing that category on the ground. Consequently, it accurately 
describes the possibility of correct crop recognition in the fields. The PA measure indicates how 
well training set pixels are classified. F1 is a weighted harmonic mean of User Accuracy and 
Producer Accuracy for each class. The OA parameter describes the best overall accuracy of a 
particular classification. It is a percentage of correctly classified pixels. This value is the  most  
commonly  reported  accuracy  assessment  statistic  and  accurately  describes  the classification 
result itself. The Kappa value is a measure of agreement between classification and the 
reference data. This is why this measure is a good parameter to compare different classification 
results. These statistics were used to describe and compare the results in the next section. 

4. RESULTS 
The best results were achieved for the set of Sentinel-2 and Landsat-8 used in one common 
classification for 8 dominant crops where the overall accuracy was almost 91% and kappa was 
over 85%. The overall accuracy for this variant was more than 5% higher than for S2 (only) 
and more than 12% higher than for L8 (only). For 19 classes in the per-pixel approach, there is 
no significant difference between S2 (OA = 72%) and S2+L8 (OA = 73%) results. However, 
the overall accuracy was 12% higher for L8+S2 (OA = 89%) in the parcel-based approach than 
for S2 as a single set of images. An example of the classified image as a map is shown in Figure 
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3. This image is a variant of Sentinel-2 and Landsat-8 common classification for 19 classes 
aggregated into crop groups. Next sections show more details on the results achieved in the 
designed approaches.  

 
Figure 3. An example of RF classification result – variant of Sentinel-2 and Landsat-8 classification 

for 19 classes aggregated to crop groups  

4.1.  Results for Sentinel-2 
Overall accuracy for 19 classes is 72% for the per-pixel approach and 77% for the per-parcel 
variant slightly higher. Low OA values are due to the poor results for non-dominant crops (all 
EFAs), permanent grassland and fallow land, which is further discussed in detail. Most of the 
dominant crops, that is, cereals, corn and rapeseed, produced results with UA ranging from 80 
to over 89% for the per-pixel approach and from 83 to 93% for the per-parcel variant. In regards 
to potatoes and beets, even though they belong to the dominant group, their results are not 
satisfactory. Within the minority crops group, only short rotation coppice (F1 = 88%) and 
wooded area (F1 = 72%) in the per-parcel approach yielded considerable results.  
A better result was achieved for 8-class classification (Figure 4) with OA = 82% in the per-
pixel and OA = 85% in the per-parcel validation. Again, crops such as corn, rapeseed and 
cereals produced results with F1 ranging from 77–87% for the per-pixel and to 81–89% for the 
per-parcel variant. A similar situation as in 19-class classification with low accuracy occurred 
for fallow land, permanent grassland, potatoes and beets. Their indicators (UA, PA) are slightly 
higher (by a marginal percentage) in per-parcel classification, but fallow land disappeared 
entirely after aggregation. This class usually went to the permanent grassland class if it was 
green cover. The low results for potatoes and beets probably come from very narrow parcels.  
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Figure 4. Results of Sentinel-2 pixel-based (variant no. 3) and parcel-based classification for only 

dominant 8 classes (variant no. 4) 

4.2.  Results for Landsat-8 
According to Landsat-8 classification, better results were achieved for the parcel-based 
approach, that is, after aggregation into parcels. For the 19-class parcel-based approach (variant 
no. 6), the overall accuracy (OA = 84%) was more than 20% higher than for the pixel-based 
approach (variant no. 5). Additionally, the results of the parcel-based approach yielded values 
of the producer’s, user’s and F1 accuracy rates higher and more homogeneous for non-dominant 
crops. In both approaches, wooded area, corn and winter cereals were classified accurately, but 
the indices for fallow land and potatoes remained low.  
For the variant with 8 dominant crops, the overall accuracy was approximately 12% higher for 
the parcel-based approach (OA = 78%) than for the pixel-based approach (OA = 66%). 
According to the pixel-based approach’s outcome, the lowest accuracy is recorded in potatoes, 
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beets and fallow land, and likewise for Sentinel-2. The results obtained for permanent grassland 
were not satisfactory either. Consequently, similar results were obtained for parcel-based 
classification (Figure 5). It should also be highlighted that category EFA1 is bare soil and green 
cover in one class, since there is no differentiation between these two categories within the 
LPIS. Therefore, the selection of the training and control sets from the database in a fully 
automatic way without additional intervention resulted in low quality classification.  
Another observation is a significant difference between accuracies at pixel level and parcel 
level, while in the case of Sentinel-2, there is no such effect. Probably the main reason is the 
spatial resolution of 30 m for Landsat-8, which in comparison to the small-sized parcels is too 
large to give proper information about the crop. The aggregation in this case raises accuracy. 
The second reason is a time-series, which is not so dense as Sentinel-2; therefore, it is 
reasonable to consider the combination of both sensors.  
For variants with EFAs crops only, the overall accuracy of classification was slightly higher 
than 25%. The highest accuracy was for lupine, where F1 = 40% and the other minority crops 
results (EFA1, 12, 13, 15) were too low to be considered as satisfactory. There are two reasons 
for this, namely the rarity and small area of these crops (often below 0.5 ha), which explains 
why only a few samples were eligible for training and control phases. 
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Figure  5.  Results  of  Landsat-8  pixel-based  (variant  no.  7)  and  parcel-based  (variant  no.  8) 

classification for 8 classes 

4.3.  Results for Sentinel-2 and Landsat-8 combined 
For 19 classes, OA = 73% for the per-pixel and 89% for the per-parcel approach. In the pixel-
based map, the highest accuracy is for corn, rapeseed, spring and winter cereals with F1 ranging 
from 68% to 85%. The same crops in per-parcel variant achieved F1 ranging from 87% for corn 
to 95% for winter cereals. The lowest classification accuracy was obtained for lupine, pea and 
fallow land. For EFA crops, similar to previous classifications, the results with OA = 22% are 
not satisfactory. The  highest  result  for  alfalfa  with  F1  is slightly  above  40%. The most 
confusion is within a common group of nitrogen-fixing crops (i.e., lupine, alfalfa, pea, etc.), so 
altogether such crop types constitute one group of EFA15 achieving OA > 90% with Kappa < 
20%. This means high accuracy for the whole class (EFA15) with confusion between particular 
N-fixing crops themselves. Therefore, it is possible to identify EFA15 as a whole group but not 
particular N-fixing crop type. Comparing the results obtained from a single sensor (Sentinel-2, 
Landsat-8) and two sensors combined (Landsat-8 + Sentinel-2), one can say that the 
classification using satellite scenes from two different systems produces better results. They 
complement each other with temporal-spectral information on crops. 
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For 8 dominant crops, OA = 82% in the per-pixel and OA = 91% in the per-parcel variant. The 
results are presented in Figure 6. The best results were achieved by the following crops: corn 
UA = 86%, rapeseed UA = 87%, spring cereals UA = 90% and winter cereals UA = 94%. 
Potatoes UA = 75% and permanent grassland UA = 74% were classified with the lowest rate. 
The last result (PG) is rather surprising, likewise for earlier L8 and S2 single-sensor 
classifications. Permanent grassland are confused mostly with winter cereals in 8-classes 
classification or with N-fixing crops (i.e., lucerne, clover) in 19-classes process. It is probably 
caused by changes made by farmers on parcels, agrotechnical treatments or their improper crop 
declarations. Otherwise, considering the period from March (19.03) to September (04.09), it is 
not long and dense enough in image (values) representations to properly differentiate spectrally 
these classes. 

 
Figure  6.  Results  of  Landsat-8  and  Sentinel-2  pixel-based  classification  (variant  no.  13)   

and parcel-based classification (variant no. 14) for 8 dominant classes 
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5. DISCUSSION 
For 19 classes in the per-pixel map, there is no statistically significant difference between S2 
(OA = 72%) and S2+L8 (OA = 73%) results. However, the overall accuracy was 12% higher 
for L8+S2 (OA = 89%) in the parcel-based approach than for S2 as single sensor images. Some 
of the crop types such as EFA15 (N-fixing crops) show a similarity of temporal and spectral 
characteristics, therefore, they are confused in the classification process, producing low results. 
It was impossible to detect such crops individually, although they separated from other crop 
groups fairly well. 
For 8 dominant crops variants, the best results were achieved for the combined scenes S2+L8 
in the parcel-based map, where the overall accuracy was almost 91% and kappa over 85%. The 
overall accuracy was more than 5% higher than for S2 and more than 12% higher than for L8 
(Figure 7). 

 
Figure 7. Comparison of 8 dominant classes results for Sentinel 2 and Landsat 8  

(PB – pixel-based validation, OB – parcel-based validation) 

The parcel data from the LPIS used for training as references and for control of the results 
should be selected automatically based on the crop type, area and homogeneity within the 
parcel, without manual interventions. However, in the case of fallow land and permanent 
grassland, this automatic approach is limited. This is due to the lack of details in farmers’ 
declarations in case of permanent grassland treatment (i.e., cutting or ploughing date) and 
appeared temporary as black cover. Permanent grassland and fallow land is not always covered 
by grass throughout the year. Due to the fact of different agrarian treatments and inaccurate 
declaration in LPIS, these two classes are confused among themselves or even sometimes with 
mix grass on arable land.  
The next class, that is, fallow land, encountered a problem with detection within the 
classification process as well. The definition of fallow land as black or green cover in the LPIS 
(Figure 8) cause an impossibility of separation as mono-class in SQL from the LPIS database. 
There are two types of covers: green and black within one class declared as fallow land. In case 
fallow land is a black cover, it is separated from other classes, in case fallow land is a green 
cover, it is confused with permanent grassland. This makes it impossible to build a consistent 
sample in the training phase in a fully automatic way. To make a proper classification for this 
class, it is recommended to keep black or green fallow indicators in LPIS records. 
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Green fallow 
before July, 31 after July, 31 

  
Black fallow 

  
Green fallow changed into bare soil 

  
Black fallow changed into green cover 

  
Figure 8. Examples of green fallow and black fallow during the year 
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There is a small difference between the training sets defining crop type classes; accuracy 
achieved for 8 classes was slightly (2–3%) higher than for 19 classes (dominant crops, 
permanent grassland and EFAs). The separation for dominant crops – 8 classes, and minority 
crops – 9 classes (such as EFAs) is recommended, but one cannot expect a significant 
improvement of results. The inclusion of rare classes such as N-fixing  crops  (variants  with  
19  classes)  does  not affect  the  accuracy  of  dominant  crop classification (a decrease by a 
few per cent). Random forests, even if addressed for classification with a small number of 
training fields, does not produce good results for such crops, which was shown within the 
classification for the EFAs group.  
In general, better results were achieved using per-parcel in post-processing classification. The 
dominant classes such as corn, rapeseed, winter and spring cereals are well distinguished from 
others. Potatoes and beets were confused but can be recognized at least as one group of crops. 
Comparing obtained results with the presented references, Overall Accuracy (OA) is at a similar 
level. According to Schmedtmann and Campagnolo (Schmedtmann et al., 2015), where Landsat 
7 ETM+ multitemporal data were used, the OA was 84%. In the study presented in this article, 
the OA with the use of Landsat 8 data was the same and comparable with OA presented in 
Kussul et al. (2015b). In Immitzer et al. (2016), crop classification with the use of Sentinel-2 
data was performed and the OA in pixel-based map was 83.2% and was higher than in the 
parcel-based map. In the presented results, the OA in pixel- and parcel-based approach is similar 
(82% and 85%) and comparable with results obtained in Immitzer et al. (2016). In Valero et al. 
(2016), the results for different areas are presented (Table 4), where the achieved OA depends 
on the region and its agricultural characteristics. Overall accuracy of the classification in central 
or west Europe (Valero et al., 2016) is slightly higher (e.g., Belgium, Ukraine: 95%) than in the 
presented results.  

Table 4. Average Overall Accuracy (OA) of crop identification using Random Forests algorithm. 
Smallholdings region indicated as bold 

Sensor OA [%] Country Source 

Landsat 8/SPOT4 

90 Argentina 

Inglada et al., 2015 

90 France 
82 Belgium 
91 South Africa 
91 USA 
93 China 
74 Ukraine 

Sentinel2 
80 Mali Lambert, 2018 
83 Austria Immitzer et al. 2016 
89 Spain Sitokonstantinou at al. 2018 

SPOT5/RapidEye 

87–90 Germany 
Stefanski, 2013 

86–88 Luxemburg 
77–94 France 

Valero et al. 2016 
92–95 Belgium 
85–95 Ukraine 
55–74 Pakistan 
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Also, the study performed in Spain (Sitokonstantinou et al., 2018) for small holdings showed 
very similar findings using S2 and L8 data. Overall accuracy given as Kappa for Random 
Forests algorithm reached 0.78 for crop types and 0.89 for crop families. The best classification 
quality (UA) was indicated for rapeseed (95%) and corn (93%), while the worst for grass (77%) 
likewise in our study. Table 5 summarizes the results for the Random Forests algorithm 
described in the above-mentioned studies. 

6. CONCLUSIONS 
Taking analysis  and  questions  raised  in  this  research,  it  can  be  noticed that  the multi-
sensor classification based on S-2 and L-8 achieved higher accuracy compared to single-sensor 
classification with an average level of 5% to 12%. For 19 classes in the per-pixel approach, 
there is no significant difference between S2 (OA = 72%) and S2+L8 (OA = 73%) results. But 
the overall accuracy was 89% for L8+S2 in the parcel-based map. For 8 dominant crops 
variants, the best results were achieved for the combined scenes S2+L8 in the parcel-based 
approach, where the overall accuracy was almost 91%. The images from both sensors can be 
combined in a single scheme of processing.  
Higher  classification  accuracy  was  achieved  using  per-parcel  in  post-processing  
classification. Moreover, different crop groups can be identified with different accuracy. The 
dominant crops like corn, rapeseed, spring and winter cereals are well distinguished from others 
and reached User Accuracy at 86% to 94%, potatoes and permanent grassland achieved User 
Accuracy of 75% on average. Despite the lower accuracy result for permanent grassland, this 
method can be considered as the method for detecting changes on PG or improper declarations. 
The minority crops like N-fixing crops or short rotation coppice reached hardly 40% of 
accuracy. Therefore, the elaborated and tested methods work well and can be recommended for 
dominant crop identification, except permanent grassland. In the future, more investigation 
should be focused on other minority crop types as well. 
The assumption of the developed and tested methodology was to include as many crops as 
possible in one coherent multi-temporal classification process. This was done to simplify and 
standardize the crop identification process including selected EFA and permanent grassland, 
treating them as crop types. However, the low representation of plots for EFA12, EFA13 and 
spectral similarity of crops from the EFA15 group and not always correctly declared permanent 
grassland caused that the proposed method for these particular crops could not be fully verified 
in the established research area. 
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