PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of vapor-liquid equilibrium of ternary system at high pressures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a numerical model for analyzing vaporliquid equilibrium of ternary (three-component) system at high pressures. The gas-phase non-idealities and solubility of gas in liquid are considered in the numerical model. The model is useful for studies involving evaporation of liquid at different pressure and temperature conditions, where the interface liquid and vapor compositions are required. At high ambient pressures, ambient gases dissolve into the liquid. Thus, even a single component liquid fuel evaporating in a high pressure ambient gas, effectively behaves like a two-component liquid system. This study considers a ternary system. The numerical model has been validated against the experimental data available in literature. The validated model is used to study the solubility of ambient gas in a binary liquid mixture at high pressures. The effects of pressure, temperature and liquid phase composition on the solubility of gas in liquid have been studied systematically.
Rocznik
Strony
137--149
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wz.
Twórcy
autor
  • Department of Mechanical Engineering Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
  • Department of Mechanical Engineering Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
  • Department of Mechanical Engineering Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
Bibliografia
  • [1] Khan Q.S., Baek S.W., Ghassemi H.: On the autoignition and combustion characteristics of kerosene droplets at elevated pressure and temperature. Combust. Sci. Technol. 179(2007), 2437–2451.
  • [2] Spalding D.B.: Theory of particle combustion at high pressures. ARS J. 29(1959), 11, 828–835.
  • [3] Gao W., Robinson Jr.R.L., Gasem K.A.M.: High-pressure solubilities of hydrogen, nitrogen, and carbon monoxide in dodecane from 344 to 410 K at pressures to 13.2 MPa. J. Chem. Eng. Data. 44(1999), 130–132.
  • [4] Matlosz R.L., Leipziger S., Torda T.P.: Investigation of liquid droplet evaporation in a high temperature and high pressure environment. Int. J. Heat Mass Tran. 15(1972), 831–852.
  • [5] Kadota T., Hiroyasu H.: Evaporation of a single droplet at elevated pressures and temperatures. Bull. JSME 19(1976), 1515–1521.
  • [6] Zhu G.S., Aggarwal S.K.: Droplet supercritical vaporization with emphasis on equation of state. Int. J. Heat Mass Tran. 43(2000), 1157–1171.
  • [7] Zhu G.S., Aggarwal S.K.: Fuel droplet evaporation in a supercritical environment. ASME J. Eng. Gas Turbines and Power 124(2002), 4, 762–770.
  • [8] Curtis E.W., Farrell P.V.: A numerical study of high-pressure droplet vaporization. Combust. Flame 90(1992), 2, 85–102.
  • [9] Zhang H., Raghavan V., Gogos G.: Subcritical and supercritical droplet evaporation within a zero gravity environment; on the discrepancies between theoretical and experimental results. Int. J. Spray Combust. Dynamics 1(2009), 3, 317–338.
  • [10] Jia H., Gogos G.: Investigation of liquid droplet evaporation in subcritical and supercritical gaseous environments. J. Thermophys. Heat Transfer 6(1992), 4, 738–745.
  • [11] Jia H., Gogos G.: High pressure droplet vaporization; effects of liquid-phase gas solubility. Int. J. Heat Mass Tran. 36(1993), 18, 4419–4431.
  • [12] Hartfield J.P., Farrell P.V.: Droplet vaporization in a high pressure gas. Trans. ASME: J. Heat Transfer 115(1993), 699–706.
  • [13] Haldenwang P., Nicoli C., Daou J.: High pressure vaporization of LOX droplet crossing the critical conditions. Int. J. Heat Mass Trans. 39(1996), 16, 3453–3464.
  • [14] Mikami M., Kono M., Sato J., Dietrich D.L., Williams F.A.: Combustion of miscible binary-fuel droplet at high pressure under microgravity. Combust. Sci. Technol. 90(1993), 1-4, 111–23.
  • [15] Megaridis C.M., Sirignano W.A.: Numerical modeling of a vaporizing multicomponent droplet. Proc. Combust. Institute 23(1990), 1413–1421.
  • [16] Weber W., Zeck S., Knapp H.: Gas solubilities in liquid solvents at high pressures: apparatus and results for binary and ternary systems of N2, CO2 and CH3OH. Fluid Phase Equilibr. 18(1984), 3, 253–278.
  • [17] Reid R.C., Prausnitz J.M., Poling B.E.: The Properties of Gases and Liquids, 4th Edn. McGraw-Hill Inc. New York 1987.
  • [18] Zabaloy M.S., Vera J.H.: The Peng-Robinson sequel. An analysis of the particulars of the second and third generations. Ind. Eng. Chem. Res. 37(1998), 1591–1597.
  • [19] Knapp H., Doring R., Oellrich L., Plocker U., Prausnitz J.M.: VaporLiquid Equilibria for Mixtures of Low Boiling Substances. Chemistry Data Series, Vol. VI, Dechema, Frankfurt 1982.
  • [20] Gao G., Daridon J.L., Saint-Guirons H., Xans P., Montel F.: A simple correlation to evaluate binary interaction parameters of the Peng-Robinson equation of state: binary light hydrocarbon systems. Fluid Phase Equilibr. 74(1992), 85–93.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10713f0f-b8cf-4ee1-a83b-5d40bc7a068a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.