PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methods used in disinfections of wastewater and sewage sludge - short review

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wastewater and sewage sludge are a place of occurrence of many microorganisms, including viruses, pathogenic and relatively pathogenic bacteria. They can leak into other environments, i.e. receiver waters or soil, thus creating a biological hazard. Increasing the sanitary level of safety of municipal wastewater treatment plants requires the introduction of disinfection of sewage and sewage sludge. The purpose of this article is a short review of the literature on methods used in disinfection of wastewater and sewage sludge. The work discusses the sanitary characteristics of wastewater and sewage sludge, primarily paying attention to the physical and chemical methods used to disinfect them. In addition, attention was also paid to the aspect of practical use of disinfection in municipal wastewater treatment plants around the world.
Rocznik
Strony
57--63
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
  • MSc Eng.; Department of Chemistry, Biology and Biotechnology, Faculty of Civil and Environmental Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland
Bibliografia
  • [1] Statistics Poland (2019a) Environment 2019, Statistics Poland, Spatial and Environmental Surveys Department, Warsaw, Poland.
  • [2] Statistics Poland (2019b) Local Data Bank (In Polish). https://bdl.stat.gov.pl [Date of access: 28.11.2019]
  • [3] Cema G., Czersta B., Grabińska-Sota E., Kalka J., Miksh K., Sikora J., Surmacz-Górska J., Żabczyński S. (2012). Sewage Biotechnology. PWN Scientific Publishing House, Warsaw, Poland.
  • [4] Bray R., Jankowska K., Kowal P., Kulbat E., Łuczkiewicz A., Olańczuk-Neyman K., Quant B. and Sokołowska A. (2015). Sewage disinfection. “Seidel- Przywecki“ Sp. z o.o. Publishing House, Warsaw, Poland.
  • [5] Hawrylik E. (2018a). Application of ultrasounds in sludge treatment processes. Gaz, Woda i Technika Sanitarna, 5(92), 187-189.
  • [6] Act of 20 July 2017 - Water Law (Polish Journal of Laws 2020, item 310).
  • [7] Henze M., Comeau Y. (2008). Wastewater Characterization. In: Biological Wastewater Treatment: Principles Modelling and Design. Published by IWA Publishing, London, England.
  • [8] Hawrylik E. (2019a). Ultrasonic Disintegration of Bacteria Contained in TreatedWastewater. Journal of Ecological Engeenering, 20(9), 171-176.
  • [9] Wu Q., LiuW. T. (2009). Determination of virus abundance, diversity and distribution in a municipal wastewater treatment plant. Water Research, 43(4), 1101-1109.
  • [10] Ye L., Zhang T. (2013). Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Applied Microbiology and Biotechnology, 97(6), 2681-2690.
  • [11] Altin A., Altin S., Degirmenci M. (2003). Characteristics and treatability of hospital (medical) wastewaters. Fresenius Environmental Bulletin, 12(9), 1098-1108.
  • [12] Boillot C., Bazi C., Tissot-Guerra F., Drogue J., Perrauu M., Cetr J. C., Trep D. (2008). Daily physicochemical, microbiological and ecotoxicological fluctuations of a hospital effuent acording to technical and care activities. Science of the Total Environment, 403, 113-129.
  • [13] Schuster A., Hadrick C., Kummerer K. (2008). Flow of active pharmaceuticals ingredients originating from health care practices on a local, regional and nationwide level in Germany - is hospital effluent treatment an effective approach for risk reduction? Water, Air, & Soil Pollution, 8, 457-471.
  • [14] Sadowy E., Luczkiewicz A. (2014). Drug-resistant and hospital-associated Enterococcus feacium from wastewater, riverine estuary and anthropogenically impacted marine catchment basin. BMC Microbiology, 14, 14-66.
  • [15] Butarewicz A. (2016). Application of ultrasounds for the disintegration of microorganisms in sewage and sewage sludge. Publishing House of the Białystok University of Technology, Bialystok, Poland.
  • [16] Hawrylik E., Zaręba K., Butarewicz A. (2017). Influence of ultrasounds on the survival of microorganisms present in sewage sludge. In: Environmental Engineering - Young Eye, Sewage and sewage sludge, 31, 111-123.
  • [17] Hawrylik E. (2019b). The use of ultrasounds in improving the sanitary quality of sewage sludge. In: Series of monographs, Innovations-Sustainability, Modernity, Opennes, Water, 38, 9-18.
  • [18] Davis R.D., Carrington E.G., Gendebien A., Aitken M.N., Fenlon D., Svoboda I. (2013). A users’ guide to research on apllication of organic waste to land. Report SR 4624/3.
  • [19] Butarewicz A. 2013. Pathogenic organisms in sewage sludge - their detection and neutralization. Publishing House of the Białystok University of Technology, Bialystok, Poland.
  • [20] U.S. Environmental Protection Agency (2003). Environmental Regulations and Technology: Control of Pathogens and Vector Attraction in Sewage Sludge, Epa/625/R-92/013, Revised edition. U.S. EPA, Washington, D.C.
  • [21] Olańczuk-Neyman K., Quant B. (2015). Sewage disinfection. Seidel-Przywecki Sp. z o.o Publishing House, Warsaw, Poland.
  • [22] Li D., Craik S. A., Smith D. W., Belosevic M. (2009). The assessment of particle association and UV disinfection of wastewater using indigenous spore-forming bacteria. Water Research, 43, 481-489.
  • [23] Camarillo M. K., Loge F. J., Darby J. L. (2010). Model to Quantify Removal and Inactivation of Microorganisms Occluded in Effluent Wastewater Particles Using Filtration and Disinfection Systems. Journal of Environmental Engineering, 136(10), 1153-1160.
  • [24] Bitton G. (2011). Wastewater microbiology. 4th Edition, Wiley-Blackwell, New York.
  • [25] Vaz-Moriera I., Egas C., Nunes O. C., Manaia C. M. (2011). Culture-dependent and culture-independent diversity surveys target different bacteria: a case study in a freshwater sample. Antonie van Leeuwenhoek, 100, 245-257.
  • [26] Hawrylik E. (2018b). Issues of the presence of parasitic protozoa in surface waters, In: E3S Web of Conferences, 30, 1-8. DOI:10.1051/e3sconf/20183001010
  • [27] Dietrich J. P., Loge F. J., Ginn T. R., Basagaoglu H. (2007). Inactivation of particle-associated microorganisms in wastewater disinfection: modeling of ozone and chlorine reactive diffusive transport in polydispersed suspensions. Water Research, 41(10), 2189-2201.
  • [28] Michałkiewicz M., Jeż-Walkowiak J., Dymaczewski Z., SozańskiM. (2011).Wastewater disinfection. Journal of Ecological Engineering, 24, 38-51 (In Polish).
  • [29] U.S. Environmental Protection Agency (1999b). Environmental Regulations and Technology: Combine Sewer Overflow. Technology Fact Sheet. Chlorine disinfection. Epa/832/F-99/034, U.S. EPA, Washington, D.C.
  • [30] Ji Z., Wang X. C., Xu L., Zhang C., Rong C., Rachmadi A. T., Amarasiri M., Okabe S., Funamizu N., Sano D. (2019). Fecal source tracking in a wastewater treatment and reclamation system using multiple waterborne gastroenteritis viruses. Pathogens, 8(4), 170.
  • [31] Janex M., Savoye P., Roustan M., Do-Quang Z., Lazarova V. (2000). Wastewater Disinfection by ozone: influence of water quality and kinetic modeling. Ozone. Science & Engineering, 22(2), 113-120.
  • [32] Nasuhoglu, D., Isazadeh, S., Westlund, P., Neamatallah, S., Yargeau, V. (2018). Chemical, microbial and toxicological assessment of wastewater treatment plant effluents during disinfection by ozonation. Chemical Engineering Journal, 346, 466-476.
  • [33] U.S. Environmental Protection Agency (1999a). Environmental Regulations and Technology: Wastewater Technology Fact Sheet Ozone Disinfection. Epa/832/F-99/063, U.S. EPA, Washington, D.C.
  • [34] Lenntech. (2014). Chemical disinfecants: Peracetic acid. Lenntech BV. https://www.lenntech.com/processes/disinfection/che mical/disinfectants-peracetic-acid.htm
  • [Date of access: 03 January 2020].
  • [35] Porat I., Brosseau C., Snyder C., Hill C., Stammegna M., Beaudry S. (2019). Wastewater disinfection - The smart way. WEFTEC 2019 - 92nd Annual Water Environment Federation’s Technical Exhibition and Conference, 4128-4146.
  • [36] Karpova T., Pekonen P., Gramstad R., Ojstedt U., Laborda S., Heinonen-Tanski H., Chavez A., Jimenez B. (2013). Performic acid for advanced wastewater disinfection. Water Science Technology, 68(9), 2090-2096.
  • [37] Tondera K., Klaer, K., Koch, C., Hamza, I. A., Pinnekamp J. (2016). Reducing pathogens in combined sewer overflows using performic acid. International Journal of Hygiene and Environmental Health, 219(7), 700-708.
  • [38] WERF Water Environment Research Foundation. (2008). Disinfection of Wastewater Effluent - Comparision of Alternative Technologies. IWA Publishing, London, England.
  • [39] Zhang C., Brown P. J. B., Miles R. J., White T. A., Grant D. G., Stalla D., Hu Z. (2019). Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection. Water Research, 149, 640-649.
  • [40] Junga P., Mach P., Mareek J. (2017). Evaluation of efficiency of technologies for wastewater sludge hygienisation. Journal of Agricultural Engineering Research, 63(2), 54-61.
  • [41] EL Shahawy A., El-Shatoury S., Bayomi S., El- Monayeri D. (2019). Wastewater Disinfection Using Artificial Ultraviolet Rays Technology. The Handbook of Environmental Chemistry, 75, 241-312.
  • [42] Gitis V., Hankins N. (2018). Water treatment chemicals: Trends and challenges. Journal of Water Process Engineering, 25, 34-38.
  • [43] Bodzek M., Konieczny K., Rajca M. (2019). Membranes in water and wastewater disinfection - review. Archives of Environmental Protection, 1(45), 3-18.
  • [44] Wintgens T., Melin T., Schafer A., Khan S., Muston M., Bixio D., Thoeye C. (2005). The role of membrane process in municipal wastewater reclamation and reuse. Desalination, 178, 1-11.
  • [45] Matafonova G., Batoev V. (2019). Review on low- and high-frequency sonolytic, sonophotolytic and sonophotochemical processes for inactivating pathogenic microorganisms in aqueous media. Water Research, 166, 115085.
  • [46] Vázquez-López M., Amabilis-Sosa L.E., Moeller- Chávez G. E., Roé-Sosa A., Neumann P., Vidal G. (2019). Evaluation of the ultrasound effect on treated municipal wastewater. Environmental Technology, 40(27), 3568-3577.
  • [47] Gassie L. W., Englehardt J. D. (2017). Advanced oxidation and disinfection processes for onsite net-zero greywater reuse: A review. Water Research, 125, 384-399.
  • [48] Arthurson V. (2008). Proper Sanitization of Sewage Sludge: a Critical Issue for a Sustainable Society. Applied and Environmental Microbiology, 74(17), 5267-5275.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-106ff9c2-2a71-4e5c-8d5e-5905fc9a43a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.