PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical and thermal characteristics of soluble polysaccharides from fruit pericarps of the Algerian Argania spinosa

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soluble polysaccharides were isolated from fruit pericarps of the Algerian Argania spinosa. The cell wall fraction was subjected to sequential extractions with H2O (2 × 2 h at 100oC), EDTA (1%, 6 h at 80oC) and KOH (1 and 4 M, 14 h at 25oC) . The structures of the obtained polysaccharide fractions were characterized using gas chromatography (GC), infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The presence of arabinose, galactose and rhamnose in the pectin fractions suggests the presence of rhamnogalacturonan, while the abundance of xylose in the hemicellulosic fractions indicates the presence of xylan. The DSC data revealed the endothermal behavior of all the soluble polysaccharides and only two thermal transitions, the glass transition (Tg) and the fusion transition (Tf) have been recorded.
Słowa kluczowe
Rocznik
Strony
17--21
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Laboratoire des Productions, Valorisations Végétales et Microbiennes, Département de Biotechnologie, Université des Sciences et de la Technologie d’Oran – Mohamed Boudiaf, 31000, Oran, Algeria
  • Département de Biologie, Université de Saida – Dr. Moulay Tahar, 20000 Saida, Algeria
  • Laboratoire de Recherche sur les Macromolécules, Département de Physique, Faculté des Sciences, Université Abou Bakr Belkaïd, 13000, Tlemcen, Algeria
  • Département de Biologie, Université de Saida – Dr. Moulay Tahar, 20000 Saida, Algeria
  • Laboratoire des Productions, Valorisations Végétales et Microbiennes, Département de Biotechnologie, Université des Sciences et de la Technologie d’Oran – Mohamed Boudiaf, 31000, Oran, Algeria
Bibliografia
  • 1. Coma, V. (2013). Polysaccharide-based biomaterials with antimicrobial and antioxidant properties. Polímeros. 23(3), 287–297. DOI: 10.4322/polimeros020ov002.
  • 2. Majee, S.B., Avlani, D. & Biswas, G.R. (2017). Pharmacological, pharmaceutical, cosmetic and diagnostic applications of sulfated polysaccharides from marine algae and bacteria. Afr. J. Pharm. Pharmacol. 11(5), 68–77. DOI: 10.5897/AJPP2016.4695.
  • 3. Castro, J.P.L.d., Costa, L.E.C. , Pinheiro, M.P., Francisco, T.d.S., Vasconcelos, P.H.M.d., Funari, L.M., Daudt, R.M., Santos, G.R.C.d., Cardozo, N.S.M. & Freitas, A.L.P. (2018). Polysaccharides of red alga Gracilaria intermedia: structure, antioxidant activity and rheological behavior, Polímeros. 28(2), 178–186. DOI: 10.1590/0104-1428.013116.
  • 4. Khenblouche, A., Bechki, D., Gouamid, M., Charradi, K., Segni, L., Hadjadj, M. & Boughali, S. (2019). Extraction and characterization of cellulose microfibers from Retama raetam stems. Polímeros. 29(1). e2019011. DOI: 10.1590/0104-1428.05218.
  • 5. Mébarki, M., Hachem, K. & Kaid-Harche, M. (2019). Lignocellulosic fraction of the pericarps of the acorns of Quercus suber and Quercus ilex: isolation, characterization, and biosorption studies in the removal of copper from aqueous solutions. Pol. J. Chem. Tech., 21, 3, 40–47, DOI: 10.2478/pjct-2019-0028.
  • 6. Hachem, K., Faugeron, C., Kaid-Harche, M. & Gloaguen, V. (2016). Structural Investigation of Cell Wall Xylan Polysac-charides from the Leaves of Algerian Argania spinosa. Molecules. 21(11), 1587. DOI: 10.3390/molecules21111587.
  • 7. Peltier, J.P. (1983). Les séries de l’arganeraie steppique dans le Souss (Maroc). Ecol. Mediterr. 9, 77–88.
  • 8. Kechairi, R. & Benmahioul, B. (2019). Comportement des plants d’Arganier (Argania spinosa L. Skeels, Sapotaceae) au sud-ouest Algérien (Tindouf, Bechar et Adrar). Int. J. Environ. Stud. 76(5), 800–814. DOI: 10.1080/00207233.2019.1602378.
  • 9. Kechairi, R. & Abdoun, F. (2016). État des lieux cartographiques de l’arganier Argania spinosa (L.) Skeels (Sapotaceae) en Afrique Nord-Occidentale (Algérie et Sahara Occidental). Int. J. Environ. Stud. 73(2), 286–293. DOI: 10.1080/00207233.2016.1148448.
  • 10. Sebaa, H.S. & Harche, M.K. (2014). Anatomical structure and ultrastructure of the endocarp cell walls of Argania spinosa (L.) Skeels (Sapotaceae). Micron. 67, 100–106. DOI: 10.1016/j.micron.2014.07.001.
  • 11. Kenny, L. (2007). Atlas de l’arganier et de l’arganeraie. Agadir: Institut Agronomique et Vétérinaire.
  • 12. Merouane, A., Noura, A. & Khelifa-Zoubir, M. (2014). In vitro estimate of the energy value of argan from Algeria. L ivest Res. Rural Dev. 26(5), 2014.
  • 13. Blumenkrantz, N. & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Anal. Biochem. 54(2), 484–489. DOI: 10.1016/0003-2697(73)90377-1.
  • 14. Selvendran, R.R., March J.F. & Ring, S.G. (1979). Determination of aldoses and uronic acid content of vegetable fiber. Anal. Biochem. 96(2), 282–292. DOI: 10.1016/0003-2697(79)90583-9.
  • 15. Boudraa, K., Bouchaour, T. & Maschke, U. (2019). Thermal analysis of interpenetrating polymer networks through molecular dynamics simulations: a comparison with experiments. J. Therm. Anal. Calorim. 140, 1845–1857. DOI: 10.1007/s10973-019-08898-y.
  • 16. Boudraa, K.E., Bouchaour, T., Beyens, C. & Maschke, U. (2020). Novel interpenetrating polymer network composed of poly(butyl acrylates) and poly(ethyl-hexyl acrylate). Int. J. Polym. Anal. Char. 25(1), 18–33. DOI: 10.1080/1023666x.2020.1737467.
  • 17. Schols, H.A. & Voragen, A.G.J. (1996). In J. Visser, & A.G.J. Voragen, (Eds.), Pectins and pectinases (pp. 3–19).: Amsterdam: Elsevier Science BV.
  • 18. Aboughe-Angone, S., Nguema-Ona, E., Ghosh, P., Lerouge, P., Ishii, T., Ray, B. & Driouich, A. (2008). Cell wall carbohydrates from fruit pulp of Argania spinosa: structural analysis of pectin and xyloglucan polysaccharides. Carbohydr. Res. 343(1), 67–72. DOI: 10.1016/j.carres.2007.10.018
  • 19. Stitt, M. & Zeeman, S.C. (2012). Starch turnover: pathways, regulation and role in growth. Curr. Opin. Plant Biol. 15(3), 282–292. DOI: 10.1016/j.pbi.2012.03.016.
  • 20. Yang, B., Jiang, Y., Zhao, M., Chen, F., Wang, R., Chen, Y. & Zhang, D. (2009). Structural characterisation of poly-saccharides purifi ed from longan (Dimocarpus longan Lour.) fruit pericarp. Food Chem. 115(2), 609–614. DOI: 10.1016/j.foodchem.2008.12.082.
  • 21. Mébarki, M., Hachem, K., Faugeron-Girard, C., Mezemaze, R.H. & Kaid-Harche, M (2019). Extraction and analysis of the parietal polysaccharides of acorn pericarps from Quercus trees. Polímeros. 29(3), e2019044. DOI: 10.1590/0104-1428.06119.
  • 22. Hu, R., Xu, Y., Yu, C., He, K., Tang, Q., Jia, C., He, G., Wang, X., Kong, Y. & Zhou, G. (2017). Transcriptome analysis of genes involved in secondary cell wall biosynthesis in developing internodes of Miscanthus lutarioriparius. Sci. Rep. 7(1), 9034. DOI: 10.1038/s41598-017-08690-8.
  • 23. Habibi, Y. & Vignon, M.R. (2005). Isolation and characterization of xylans from seed pericarp of Argania spinosa fruit. Carbohydr. Res. 340(7), 1431–1436. DOI: 10.1016/j.carres.2005.01.039. PMid:15854618.
  • 24. Habibi, Y., Heux, L., Mahrouz, M. & Vignon, M.R. (2008). Morphological and structural study of seed pericarp of Opuntia ficus-indica prickly pear fruits. Carbohydr. Polym. 72(1), 102–112. DOI: 10.1016/j.carbpol.2007.07.032.
  • 25. Taboada, E., Fisher, P., Jara, R., Zúñiga, E., Gidekel, M., Cabrera, J.C., Pereira, E., Gutierrez-Moraga, A., Villalonga, R. & Cabrera, G. (2010). Isolation and characterisation of pectic substances from murta (Ugni molinae Turcz) fruits. Food Chem. 123(3), 669–678. DOI: 10.1016/j.foodchem.2010.05.030.
  • 26. Kacurakova, M., Wellner, N., Ebringerova, A., Hromidkova, Z., Wilson, R.H. & Belton, P.S. (1999). Characterization of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-raman spectroscopies. Food Hydrocoll. 13(1), 35–41. DOI: 10.1016/S0268-005X(98)00067-8.
  • 27. Hachem, K., Faugeron-Girard, C., Kaid-Harche, M. & Gloaguen, V. (2017). Acid hydrolysis of xylan polysaccharides fractions isolated from argan (Argania spinosa) leaves. Cogent Chem. 3, 1370684. DOI: 10.1080/23312009.2017.1370684.
  • 28. Yang, H., Yan, R., Chen, H., Lee, D.H. & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86(12–13), 1781–1788. DOI: 10.1016/j.fuel.2006.12.013.
  • 29. Xu, Q.X., Shi, J.J., Zhang, J.G., Li, L., Jiang, L. & Wei, Z.J. (2016). Thermal, emulsifying and rheological properties of polysaccharides sequentially extracted from Vaccinium bracteatum Thunb. leaves. Int. J. Biol. Macromol. 93, 1240–1252. DOI: 10.1016/j.ijbiomac.2016.09.098
  • 30. Sun, X.F., Sun, R.C., Tomkinson, J. & Baird, M.S. (2003). Preparation of sugarcane bagasse hemicellulosic succinates using NBS as catalyst. Carbohydr. Polym. 53(4), 483–495. DOI: 10.1016/S0144-8617(03)00150-4.
  • 31. Winkler, H., Vorwerg, W. & Rihm, R. (2014). Thermal and mechanical properties of fatty acid starch esters. Carbohydr. Polym. 102, 941–949. DOI: 10.1016/j.carbpol.2013.10.040.
  • 32. Ball, R., McIntosh, A.C. & Brindley, J. (2004). Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments. Combust. Theor. Model. 8(2), 281–91. DOI: 10.1088/1364-7830/8/2/005.
  • 33. Di Blasi, C., Branca, C., Sarnataro, F.E. & Gallo, A. (2014). Thermal Runaway in the Pyrolysis of Some Lignocellulosic Biomasses. Energ. Fuel. 28(4), 2684–2696. DOI: 10.1021/ef500296g.
  • 34. Werner, K., Pommer, L. & Broström, M. (2014). Thermal decomposition of hemicelluloses. J. Anal. Appl. Pyrol. 110, 130–137. DOI: 10.1016/j.jaap.2014.08.013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-106de503-92d6-485f-8dee-224771ec905a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.