Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The mono-digestion of sludge in biogas production has limitations due to its inefficient process. To overcome this issue, co-digestion with food waste at an optimal mixing ratio can be applied to enhance biogas production. Additionally, further optimization can be achieved by adding biochar, which acts as a stabilizer and increases the systems buffering capacity. This study investigates the role of biochar as a process stabilizer in biogas yield through the co-digestion of food waste and sewage sludge. The substrates consisted of food waste and sewage sludge mixed at a 4:1 ratio, with cow dung serving as the methanogenic bacteria inoculum in a 1:1 ratio. Fermentation was performed in an 11 L reactor at 38 °C, pH 7 ± 0.2, and an agitation speed of 80 rpm, with biochar added in varying amounts of 0 g/L, 0.5 g/L, and 1.5 g/L. Parameters analyzed included pH, m-alkalinity, total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), chemical oxygen demand (COD), and biogas volume. Results showed that a biochar addition of 1.5 g/L achieved best performance compared to 0 g/L and 1 g/L, producing 3.19 L/gVS.day of biogas. The optimal composition of methane, carbon dioxide, and hydrogen sulfide was 76.00%, 23.13%, and 0.31% (v/v), respectively, with a final VS reduction of 12,000 mg/L. Biochar addition significantly improved process stability and biogas production, highlighting its potential to enhance efficiency and support sustainable industrial-scale waste management.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
220--229
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
- Waste-to-Industrial Sustainable Energy Center, Universitas Sumatera Utara, Medan 20155, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
- Waste-to-Industrial Sustainable Energy Center, Universitas Sumatera Utara, Medan 20155, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
- Waste-to-Industrial Sustainable Energy Center, Universitas Sumatera Utara, Medan 20155, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
- Waste-to-Industrial Sustainable Energy Center, Universitas Sumatera Utara, Medan 20155, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
- Waste-to-Industrial Sustainable Energy Center, Universitas Sumatera Utara, Medan 20155, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
autor
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan
autor
- PT. Rejeki Abadi Sambosar, Tebing Tinggi, North Sumatera, Indonesia
Bibliografia
- 1. Abdullahi, A. B., Siregar, A. R., Pakiding, W., & Mahyuddin. (2021). The analysis of BOD (Biological Oxygen Demand) and COD (Chemical Oxygen Demand) contents in the water of around laying chicken farm. IOP Conference Series: Earth and Environmental Science, 788(1). https://doi.org/10.1088/1755-1315/788/1/012155
- 2. Ambaye, T. G., Rene, E. R., Nizami, A. S., Dupont, C., Vaccari, M., & van Hullebusch, E. D. (2021). Beneficial role of biochar addition on the anaerobic digestion of food waste: A systematic and critical review of the operational parameters and mechanisms. Journal of Environmental Management, 290(April). https://doi.org/10.1016/j.jenvman.2021.112537
- 3. Antonangelo, J. A., Sun, X., & Zhang, H. (2021). The roles of co-composted biochar (COMBI) in improving soil quality, crop productivity, and toxic metal amelioration. Journal of Environmental Management, 277(September 2020). https://doi.org/10.1016/j.jenvman.2020.111443
- 4. Cheng, J., Ding, L., Lin, R., Yue, L., Liu, J., Zhou, J., & Cen, K. (2016). Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: Effects of physiochemical properties and mix ratios on fermentation performance. Applied Energy, 184, 1–8. https://doi.org/10.1016/j.apenergy.2016.10.003
- 5. Cheong, W. L., Yi, J. C., Timm, J. T., Woon, C. C., Worapon, K., Kunlanan, K., Mardawani, M., Hanita, D., Wayan, K. S., Mega, M. S., & Jun, W. L. (2022). Anaerobic Co-Digestion of Food Waste with Sewage Sludge: Simulation and Optimization for Maximum Biogas Production. Water, 14, 1–21. https://doi.org/10.3390/w14071075
- 6. Choong, Y. Y., Chou, K. W., & Norli, I. (2018). Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review. Renewable and Sustainable Energy Reviews, 82(October), 2993–3006. https://doi.org/10.1016/j.rser.2017.10.036
- 7. Fagbohungbe, M. O., Herbert, B. M. J., Hurst, L., Ibeto, C. N., Li, H., Usmani, S. Q., & Semple, K. T. (2017). The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Management, 61, 236–249. https://doi.org/10.1016/j.wasman.2016.11.028
- 8. Gryta, A., Skic, K., Adamczuk, A., Skic, A., Marciniak, M., Józefaciuk, G., & Boguta, P. (2024). The importance of the targeted design of biochar physicochemical properties in microbial inoculation for improved agricultural productivity-A review. Agriculture (Switzerland), 14(1). https://doi.org/10.3390/agriculture14010037
- 9. Hamzah, M. A. F., Jahim, J. M., Abdul, P. M., & Asis, A. J. (2019). Investigation of temperature effect on start-up operation from anaerobic digestion of acidified palm oil mill effluent. Energies, 12(13). https://doi.org/10.3390/en12132473
- 10. Jang, H. M., Choi, Y. K., & Kan, E. (2018). Effects of dairy manure-derived biochar on psychrophilic, mesophilic and thermophilic anaerobic digestions of dairy manure. Bioresource Technology, 250(October), 927–931. https://doi.org/10.1016/j.biortech.2017.11.074
- 11. Liu, H., Wang, X., Fang, Y., Lai, W., Xu, S., & Lichtfouse, E. (2022). Enhancing thermophilic anaerobic co-digestion of sewage sludge and food waste with biogas residue biochar. Renewable Energy, 188, 465–475. https://doi.org/10.1016/j.renene.2022.02.044
- 12. Meneses Quelal, O., & Pilamunga Hurtado, D. (2023). Anaerobic fermentation of slaughterhouse waste-codigestion with wheat straw to determine methane biochemical potential and kinetic analysis. Fermentation, 9(8). https://doi.org/10.3390/ fermentation9080726
- 13. Osman, A. I., Fawzy, S., Farghali, M., El-Azazy, M., Elgarahy, A. M., Fahim, R. A., Maksoud, M. I. A. A., Ajlan, A. A., Yousry, M., Saleem, Y., & Rooney, D. W. (2022). Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. In Environmental Chemistry Letters 20(4). Springer International Publishing. https://doi.org/10.1007/ s10311-022-01424-x
- 14. Polo, C. M., Maria, D. M. C. C., & Yolanda, M. S. (2018). Reviewing the anaerobic digestion of food waste: from waste generation and anaerobic process to its perspectives. Applied Sciences, 8, 1–35. https://doi.org/10.3390/app8101804
- 15. Rasapoor, M., Young, B., Asadov, A., Brar, R., Sarmah, A. K., Zhuang, W. Q., & Baroutian, S. (2020). Effects of biochar and activated carbon on biogas generation: A thermogravimetric and chemical analysis approach. Energy Conversion and Management, 203(October 2019). https://doi.org/10.1016/j.enconman.2019.112221
- 16. Sarwono, E., Endata, R., & Widarti, B. N. (2018). Effect of variation of mixture leachate with fluid in cattle rumen formation of biogas. Reaktor, 18(03), 171–175. https://doi.org/10.14710/ reaktor.18.03.171-175
- 17. Sunyoto, N. M. S., Zhu, M., Zhang, Z., & Zhang, D. (2016). Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresource Technology, 219, 29–36. https://doi.org/10.1016/j.biortech.2016.07.089
- 18. Trisakti, B., Irvan, & Sitompul, D. B. (2021). Stabilitas digester anaerobik satu tahap dalam produksi biogas pada variasi temperatur menggunakan reaktor batch. Jurnal Teknik Kimia USU, 10(1), 25–30. https://doi.org/10.32734/jtk.v10i1.3271
- 19. Wang, J., & Guo, X. (2024). The Gompertz model and its applications in microbial growth and bioproduction kinetics: Past, present and future. Biotechnology Advances, 72(November 2023). https://doi.org/10.1016/j.biotechadv.2024.108335
- 20. Wei, W., Guo, W., Ngo, H. H., Mannina, G., Wang, D., Chen, X., Liu, Y., Peng, L., & Ni, B. J. (2020). Enhanced high-quality biomethane production from anaerobic digestion of primary sludge by corn stover biochar. Bioresource Technology, 306(January), 123159. https://doi.org/10.1016/j. biortech.2020.123159
- 21. Yin, C., Shen, Y., Yuan, R., Zhu, N., Yuan, H., & Lou, Z. (2019). Sludge-based biochar-assisted thermophilic anaerobic digestion of waste-activated sludge in microbial electrolysis cell for methane production. Bioresource Technology, 284(March), 315– 324. https://doi.org/10.1016/j.biortech.2019.03.146
- 22. Zhang, Y., Yang, Z., Xu, R., Xiang, Y., Jia, M., Hu, J., Zheng, Y., Xiong, W. P., & Cao, J. (2019). Enhanced mesophilic anaerobic digestion of waste sludge with the iron nanoparticles addition and kinetic analysis. Science of the Total Environment, 683, 124–133. https://doi.org/10.1016/j.scitotenv.2019.05.214
- 23. Zhuang, H., Zhu, H., Shan, S., Zhang, L., Fang, C., & Shi, Y. (2018). Potential enhancement of direct interspecies electron transfer for anaerobic degradation of coal gasification wastewater using up-flow anaerobic sludge blanket (UASB) with nitrogen doped sewage sludge carbon assisted. Bioresource Technology, 270(July), 230–235. https://doi.org/10.1016/j.biortech.2018.09.012
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10679a86-05f8-4fa6-81a2-f4076cc91ee6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.