PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Critical comparison of INAA and ICP-MS applied in the characterization of purity of TRISO fuel and substrates to its production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Development and Applications of Nuclear Technologies NUTECH-2020 (04–07.10.2020; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
The application of inductively coupled plasma mass spectrometry (ICP-MS), both in solution and laser ablation (LA) mode, and instrumental neutron activation analysis (INAA) in the nuclear material analysis are presented in this paper. The possibility of each technique for the chemical characterization of substances used during TRISO fuel production and its advantages and limitations are discussed based on the obtained results of the analysis of real materials used in TRISO fuel production in the Institute of Nuclear Chemistry and Technology. The paper also reports the application of INAA and LA-ICP-MS to the verifi cation of the purity of the protective layers of pyrolytic carbon (PyC) and silicon carbide.
Czasopismo
Rocznik
Strony
121--126
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
  • Institute of Nuclear Chemistry and Technology Laboratory of Nuclear Analytical Methods Dorodna 16 Str., 03-195 Warsaw, Poland
  • Institute of Nuclear Chemistry and Technology Laboratory of Nuclear Analytical Methods Dorodna 16 Str., 03-195 Warsaw, Poland
Bibliografia
  • 1. International Atomic Energy Agency. (2010). High temperature gas cooled reactor fuels and materials. Vienna: IAEA. (IAEA-TECDOC-1645).
  • 2. Quade, R. N., & McMain, A. T. (1975). Hydrogen production with a high-temperature gas-cooled reactor (HTGR). In T. N. Veziroglu (Ed.), Hydrogen Energy (pp. 137–154). New York: Plenum Press.
  • 3. Chao Fang, C., Morris, R., & Li, F. (2017). Safety features of high temperature gas cooled reactor. Sci. Technol. Nucl. Install., 2017, art. ID 9160971. DOI: 10.1155/2017/9160971.
  • 4. Verfondern, K., Nabielek, H., & Kendall, J. M. (2007). Coated particle fuel for high temperature gas cooled reactors. Nucl. Eng. Technol., 39, 603–616. DOI: 10.5516/NET.2007.39.5.603.
  • 5. De Souza, A. L., Cotrim, M. E. B., & Pires, M. A. F. (2013). An overview of spectrometric techniques and sample preparation for the determination of impurities in uranium nuclear fuel grade. Microchem. J., 106, 194–201. DOI: 10.1016/j.microc.2012.06.015.
  • 6. Sadikov, I. I., Rakhimov, A. V., Salimov, M. I., Zinov’ev, V. G., Mukhamedshina, N. M. F., & Tashimova, A. (2009). Neutron activation analysis of pure uranium: Preconcentration of impurity elements. J. Radioanal. Nucl. Chem., 280, 489–493. DOI: 10.1007/s10967-008-7389-y.
  • 7. Oliveira Junior, O. P., & Sarkis, J. E. S. (2002). Determination of impurities in uranium oxide by inductively coupled plasma mass spectrometry (ICPMS) by the matrix matching method. J. Radioanal. Nucl. Chem., 254, 519–526. DOI: 10.1023/A:1021642122066.
  • 8. Bürger, S., Riciputi, L. R., & Bostick, D. A. (2007). Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method. J. Radioanal. Nucl. Chem., 274, 491–505. DOI:10.1007/s10967-006-6930-0.
  • 9. Saha, A., Kumari, K., Deb, S. B., & Saxena, M. K. (2021). Determination of critical trace impurities in “uranium silicide dispersed in aluminium” nuclear fuel by inductively coupled plasma mass spectrometry (ICP-MS). J. Anal. At. Spectrom., 36, 561–569. DOI: 10.1039/D0JA00391C.
  • 10. Bode, P. (1996). Instrumental and organizational aspects of a neutron activation analysis laboratory. Delft, The Netherlands: Delft University of Technology.
  • 11. Greenberg, R. R., Bode, P., & De Nadai Fernandes, E. A. (2011). Neutron activation analysis: A primary method of measurement. Spectroc. Acta Pt. B-Atom. Spectr., 66(3/4), 193–241. DOI: 10.1016/j.sab.2010.12.011.
  • 12. Ammann, A. A. (2007). Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool. J. Mass Spectrom., 42, 419–427. DOI: 10.1002/jms.1206.
  • 13. Chajduk, E., Kalbarczyk, P., Dudek, J., Pyszynska, M., Bojanowska-Czajka, A., & Samczyński, Z. (2020). Development of analytical procedures for chemical characterization of substrates for the production of TRISO coated particles as nuclear fuel in high temperature gas-cooled reactors. Sustainability, 12(17), 7221–7234. DOI: 10.3390/su12177221.
  • 14. Brykała, M., Rogowski, M., Wawszczak, D., Olczak, T., & Smoliński, T. (2020). Microspheres and pellets of UO2 prepared via ADU by complex sol-gel proces and ICHTJ process. Arch. Metall. Mater., 65(4), 1397–1404. DOI: 10.24425/amm.2020.133706.
  • 15. Deptuła, A., Brykała, M., Rogowski, M., Smoliński, T., Olczak, T., Łada, W., Wawszczak, D., Chmielewski, A., & Goretta, K. C. (2014). Fabrication of uranium dioxide microspheres by classic and novel sol-gel processes. MRS Online Proceedings Library, 1683, 64–69. https://doi.org/10.1557/opl.2014.672.
  • 16. National Institute of Standards and Technology (2012). Certificate of Analysis. Standard Reference Material 610. Available from https://www-s.nist.gov/srmors/certificates/610.pdf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10615609-b089-4011-9b54-f5d38bf5697a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.