Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The issue of line simplification is one of the fundamental problems of generalisation of geographical information, and the proper parameterisation of simplification algorithms is essential for the correctness and cartographic quality of the results. The authors of this study have attempted to apply computational intelligence methods in order to create a cartographic knowledge base that would allow for non-standard parameterisation of WEA (Weighted Effective Area) simplification algorithm. The aim of the conducted research was to obtain two independent methods of non-linear weighting of multi-dimensional regression function that determines the “importance” of specific points on the line and their comparison to each other. The first proposed approach consisted in the preparation of a set of cartographically correct examples constituting a basis for teaching a neural network, while the other one consisted in defining inference rules using fuzzy logic. The obtained results demonstrate that both methods have great potential, although the proposed solutions require detailed parameterisation taking into account the specificity of geometric variety of the source data.
Wydawca
Czasopismo
Rocznik
Tom
Strony
255--269
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- Warsaw University of Technology, Faculty of Geodesy and Cartography 1 Plac Politechniki, 00-661 Warszaw, Poland
autor
- Warsaw University of Technology, Faculty of Geodesy and Cartography 1 Plac Politechniki, 00-661 Warszaw, Poland
autor
- Warsaw University of Technology, Faculty of Geodesy and Cartography 1 Plac Politechniki, 00-661 Warszaw, Poland
Bibliografia
- [1] Armstrong, M. (1991). Knowledge classification and organization. In: Buttenfield B., McMaster R. (Eds.), Map generalization: Making rules for knowledge representation (pp. 103–118). New York: Longman Scientific & Technical.
- [2] Balboa, J.L.G., Lopez, F.J.A. and Luque, R.L.L. (2005). Road Line Classification For Cartographic Generalization: A Neural Net Approach. Proceedings of ICC 2005 Conference. https://icaci.org/files/documents/ICC_proceedings/ICC2005/htm/pdf/oral/TEMA9/Session 4/JOSE L. GARCIA BALBOA.pdf.
- [3] Douglas, D.H. and Peucker, T.K. (1973). Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, 10 (2), 112–122.
- [4] Han, J. and Miller, H.J. (2009). Geographic data mining and knowledge discovery. CRC Press.
- [5] Liu,W., Gopal, S. andWoodcock, C. (2001). Spatial Data Mining for Classification, Visualisation and Interpretation with Artmap Neural Network. In Data mining for scientific and engineering applications (pp. 201–221). Springer, Boston, MA.
- [6] Imhof, E. (2015). Cartographic relief presentation. Walter de Gruyter GmbH & Co KG.
- [7] Laurini, R. and Thompson, D. (1992). Fundamentals of spatial information systems (No. 37). Academic Press.
- [8] Mark, D.M. (1991). Object modelling and phenomenon-based generalization. In: Buttenfield B., McMaster R. (Eds.), Map generalization: Making rules for knowledge representation (pp. 86–102). New York: Longman Scientific & Technical.
- [9] McMaster, R.B. (1986). A Statistical Analysis of Mathematical Measures for Linear Simplification. The American Cartographer, 13 (2): 103–116.
- [10] Meng, L. (1993, May). Application of neural network in cartographic pattern recognition. In Proccedings 16th International Cartographic Conference, Cologne (pp. 192–202).
- [11] Meyer, U. (1986, September). Software developments for computer-assisted generalization. In Proceedings of Auto-Carto London (Vol. 2).
- [12] Molenaar, M. (1993). “Object hierarchies and uncertainty in GIS” or “Why is standardisation so difficult?”. Geo-Informations-Systeme, 6 (4), 22–28.
- [13] Muller, J.C. (1990). The removal of spatial conflicts in line generalization. Cartography and Geographic Information Systems, 17 (2), 141–149.
- [14] Nickerson, B.G. (1991). Knowledge engineering for generalization. In: Buttenfield B., McMaster R. (Eds.), Map generalization: Making rules for knowledge representation (pp. 40–55). New York: Longman Scientific & Technical.
- [15] Olszewski, R. (2009). Cartographic modelling of terrain relief using computational intelligence methods. In Proceedings of ICA Conference, Santiago de Chile.
- [16] Olszewski, R. (2009). Kartograficzne modelowanie rze´zby terenu metodami inteligencji obliczeniowej. Prace Naukowe Politechniki Warszawskiej. Geodezja, 3–224.
- [17] Olszewski, R., Fiedukowicz, A. and Pillich-Kolipi´nska, A. (2013). Utilisation of computational intelligence for simplification of linear objects using extended WEA algorithm. 23–24 Aug, Dresden, 16th Generalisation Workshop, as a part of 26th International Cartographic Conference.
- [18] Patterson, D. (1996). Artificial neural networks. Singapore, Prentice Hall.
- [19] Schylberg, L. (1993). Computational methods for generalization of cartographic data in a raster environment. Royal Institute of Technology, Department of Geodesy and Photogrammetry (Doctoral dissertation, Doctoral thesis. Stockholm, Sweden).
- [20] Tadeusiewicz, R. (1998). Elementarne wprowadzenie do techniki sieci neuronowych z przykładowymi programami. Warszawa, Akademicka Oficyna Wydawnicza PLJ. ISBN 83-7101-400-7.
- [21] Veregin, H., (1999). Line Simplification, Geometric Distortion, and Positional Error. Cartographica, 36 (1): 25–39.
- [22] Visvalingam, M. and Whyatt, J.D. (1993). Line generalisation by repeated elimination of points. The Cartographic Journal, 30 (1), 46–51. DOI: 10.1179/caj.1993.30.1.46.
- [23] Visvalingam, M. and Whelan, J.C. (2014). Implications of Weighting Metrics for Line Generalisation with Visvalingam’s Algorithm. Explorations in Digital Cartography, https://hydra.hull.ac.uk/assets/hull:10064/content.
- [24] Visvalingam, M. (2015). The Visvalingam algorithm metrics, measures and heuristics. Explorations In Digital Cartography, https://hydra.hull.ac.uk/assets/hull:10596/content.
- [25] White, E.R., (1985). Assessment of Line-Generalization Algorithms Using Characteristic Points. The American Cartographer, 12 (1): 17–27. DOI: 10.1559/152304085783914703.
- [26] Wang, Z. and Müller, J.C. (1998). Line Generalization Based on Analysis of Shape Characteristics. Cartography and Geographical Information Systems, 25 (1): 3–15. DOI: 10.1559/152304098782441750.
- [27] Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338–353. DOI: 10.1016/S0019-9958(65)90241-X.
- [28] Zadeh, L.A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on systems, Man, and Cybernetics, (1), 28–44.
- [29] Zhou, S. and Jones, C.B. (2005). Shape-aware line generalisation with weighted effective area. In Developments in Spatial Data Handling (pp. 369–380). Springer, Berlin, Heidelberg.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-105c80da-0cdc-4216-8611-53b01ce258d8