PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Floodway design affected by land use changes in an urbanized area

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A flood occurs for many reasons, such as excessive rainfall, runoff coefficient, or an insufficient river channel capacity. The discharge flowing through the floodway depends on the maximum main river dimension that can be normalized. LU/LC changes are affected by runoff discharge, and runoff discharge is affected by the floodway design. The study discusses the effect of land use (LU) or land cover (LC) changes and the design of floodway channel dimensions in the Kali Kemuning watershed, East Java Province, Indonesia. The Nakayasu synthetic unit hydrograph has been used to analyse the runoff discharge, and the Hydrologic Engineering Center’s River Analysis System software analysed the hydraulic properties of river and floodway channels. Results show that the floodway channel design is determined by LU/LC conditions, and the river channel is normalized toward its maximum dimensions. Normalized channel depths and widths vary from 4 to 7 m and 16 to 46 m, respectively. The floodway channel is rectangular, with a bottom width of 10 m and depth of 4.5 m. With the runoff coefficient equal to 0.75, these normalized channel and floodway dimensions are suitable for the flood up to the 100-year return period runoff discharge.
Wydawca
Rocznik
Tom
Strony
259--266
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Universitas Brawijaya, Faculty of Engineering, Civil Engineering Department, Jl. MT Haryono 167, Malang 65145, Jawa Timur, Indonesia
  • Universitas Brawijaya, Faculty of Engineering, Civil Engineering Department, Jl. MT Haryono 167, Malang 65145, Jawa Timur, Indonesia
  • Universitas Brawijaya, Faculty of Engineering, Civil Engineering Department, Jl. MT Haryono 167, Malang 65145, Jawa Timur, Indonesia
Bibliografia
  • AL-HOURI Z., AL-OMARI A., SALEH O. 2014. Frequency analysis of annual one day maximum rainfall at Amman Zarqa Basin, Jordan. Civil and Environmental Research. Vol. 6. No. 3 p. 44–57.
  • BAIAMONTE G. 2019. A rational runoff coefficient for a revisited rational formula. Hydrological Sciences Journal. Vol. 65. Iss. 1 p. 112–126. DOI 10.1080/02626667.2019.1682150.
  • BBWS Brantas 2014. SID Pengendalian Kali Kemuning [Investigation study of Kali Kemuning River control]. Surabaya City. Brantas River Basin Development Agency East Java Province Project Report p. 84–111.
  • BBWS Brantas Hydrologic Division 2009. Laporan Data Muka Air Sungai Kali Kemuning Kabupaten Sampang [Water surface Data report of Kali Kemuning River Sampang Regency]. Brantas River Basin Development Agency East Java Province.
  • BHAGABATI S.S., KAWASAKI A. 2017. Consideration of the rainfall-runoff-inundation (RRI) model for flood mapping in a deltaic area of Myanmar. Hydrological Research Letters. Vol. 11(3) p. 155–160. DOI 10.3178/hrl.11.155.
  • BPBD 2020. Banjir di Sampang Madura Jawa Timur 2020 [Floods in Sampang city Madura East Java Province 2020] [online]. [Access 28.05.2020]. Available at: http://bpbd.sampangkab.go.id/category/pengumuman/
  • DAHDOUH Y., OUERDACHI L. 2018. Assessment of two loss methods for estimation of surface runoff in Zaafrania urban catchment, North-East of Algeria. Journal of Water and Land Development. No. 36 p. 37–43. DOI 10.2478/jwld-2018-0004.
  • DINKA M.O., CHAKA D.D. 2019. Analysis of land use/land cover change in Adei watershed, Central Highlands of Ethiopia. Journal of Water and Land Development. No. 41 p. 146–153. DOI 10.2478/jwld-2019-0038.
  • FEMA 2016. Guidance for flood risk analysis and mapping: Hydraulics – One-dimensional analysis [online]. Guidance Document 80. Washington. DC. Federal Emergency Management Agency pp. 12. [Access 28.12.2016]. Available at: https://www.fema.gov/sites/default/files/2020-02/Hydraulics_OneDimensionalAnalyses_Nov_2016.pdf.
  • FEMA 2018. Guidance for flood risk analysis and mapping: General hydrologic considerations [online]. Washington. DC. Federal Emergency Management Agency pp. 20. [Access 18.04.2018]. Available at: https://www.fema.gov/sites/default/files/2020-02/General_Hydrologic_Considerations_Guidance_Feb_2019.pdf.
  • GHAZAVI R., SAMIE M., VALI A., PAKPARVAR M. 2019. Evaluation of the effect of land use change on runoff using supervised classified satellite data. Global NEST Journal. Vol. 21. Iss. 2 p. 245–252. DOI 10.30955/gnj.002631.
  • HARYANI N.S., ZUBAIDAH A., DIRGAHAYU D., YULIANTO H.F., PASARIBU J. 2012. Model Bahaya Banjir Menggunakan Data Penginderaan Jauh di Kabupaten Sampang [Flood hazard model using remote sensing data in Sampang Districk]. Jurnal Penginderaan Jauh. Vol. 9. No.1 p. 52–66.
  • IKEUCHI K. 2012. Flood management in Japan [online]. Tokyo. MLIT. [Access 20.04.2020]. Available at: https://www.mlit.go.jp/river/basic_info/english/pdf/conf_01-0.pdf.
  • INFAZON A.P, KENJI T, TANAKA S. 2017. Impact of land-cover change between 1990 and 2000 on the regional climate of Paraguay: A first overview. Hydrological Research Letters. Vol. 11. No. 4 p. 187–193. DOI 10.3178/hrl.11.187.
  • JOORABIAN S.S., SHAYESTEH K., GHOLAMALIFARD M., AZARI M., NOTIVOLI R.S., MORENO J.I.L. 2017. Impacts of future land cover and climate change on the water balance in northern Iran. Hydrological Sciences Journal. Vol. 62. Iss. 16 p. 2655–2673. DOI 10.1080/02626667.2017.1403028.
  • KATEB Z., BOUCHELKIA H., BENMANSOUR A., BELARBI F. 2019. Hydrological modelling using the SWAT model based on two types of data from the watershed of Beni Haroun dam, Algeria. Journal of Water and Land Development. No. 43 p. 76–89. DOI 10.2478/jwld-2019-0065.
  • KUSUMASTUTI C., SUDJARWO P., CHRISTHIE M., KRISNA T. 2019. Intensity-Duration-Frequency (IDF) curve and the most suitable method to determine flood peak discharge in Upper Werba Sub-Watershed. Civil Engineering Dimension. Vol. 21. No. 2 p. 70–75. DOI 10.9744/CED.21.2.70-75.
  • LALLAM F., MEGNOUNIF A., GHENIM A.N. 2018. Estimating the runoff coefficient using the analytic hierarchy process. Journal of Water and Land Development. No. 38 p. 67–74. DOI 10.2478/jwld-2018-0043.
  • MOE I.R., KURE S., JANURIYADI N.F., FARID M., UDO K., KAZAMA S., KOSHIMURA S. 2017. Future projection of flood inundation considering land-use changes and land subsidence in Jakarta, Indonesia. Hydrological Research Letters. Vol. 11. No. 2 p. 99–105. DOI 10.3178/hrl.11.99.
  • NA W., YOO C. 2018. Evaluation of rainfall temporal distribution models with annual maximum rainfall events in Seoul, Korea. Water. Vol. 10(10), 1468. DOI 10.3390/w10101468.
  • NDULUE E.L., MBAJIORGU C.C., UGWU S.N., OGWO V., OGBU K.N. 2015. Assessment of land use/cover impacts on runoff and sediment yield using hydrologic models: A review. Journal of Ecology and the Natural Environment. Vol. 7(2) p. 46–55. DOI 10.5897/JENE2014.0482.
  • PRAKASH C.R., SREEDEVI B. 2017. Land-use land-cover change and its impact on surface runoff using remote sensing and GIS. International Journal of Advanced Remote Sensing and GIS. Vol. 6 p. 2103–2113. DOI 10.23953/cloud.ijarsg.237.
  • RADECKI-PAWLIK A., WAŁĘGA A., WOJKOWSKI J., PIJANOWSKI J. 2014. Runoff formation in terms of changes in land use – Mściwojów water reservoir area. Journal of Water and Land Development. No. 23 p. 3–10. DOI 10.1515/jwld-2014-0024.
  • River Bureau 2007. Flood management in Japan [online]. Tokyo, Japan. MLIT. [Access 15.04.2020]. Available at: https://www.narbo.jp/data/04_materials/ma_fmij.pdf
  • ŞEN Z. 1998. Average areal precipitation by percentage weighted polygon method. Journal of Hydrologic Engineering. ASCE Library. Vol. 3. Iss. 1, 69. DOI 10.1061//(ASCE)1084-0699(1998)3:1(69).
  • SIERRA-SOLER A., ADAMOWSKI J., QI Z., SAADAT H., PINGALE S. 2015. High accuracy Land Use Land Cover (LULC) maps for detecting agricultural drought effects in rainfed agro-ecosystems in central Mexico. Journal of Water and Land Development. No. 26 p. 19–35. DOI 10.1515/jwld-2015-0014.
  • TAKEUCHI K. 2002. Flood management in Japan – From rivers to basins. Water International. Vol. 27 p. 20–26. DOI 10.1080/ 02508060208686974.
  • TSUTSUMI A., JINNO K., BERNDTSSON R. 2004. Surface and sub-surface water balance estimation by the groundwater recharge model and a 3-D two-phase flow model. Hydrological Sci-ences Journal. Vol. 49. Iss. 2. DOI 10.1623/hysj.49.2.205. 34837.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1055e567-d245-4ce4-82c5-a909ded4d326
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.