PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Management strategy for seaports aspiring to green logistical goals of IMO: technology and policy solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, because of serious global challenges including the consumption of energy and climate change, there has been an increase in interest in the environmental effect of port operations and expansion. More interestingly, a strategic tendency in seaport advancement has been to manage the seaport system using a model which balances environmental volatility and economic development demands. An energy efficient management system is regarded as being vital for meeting the strict rules aimed at reducing the environmental pollution caused by port facility activities. Moreover, the enhanced supervision of port system operating methods and technical resolutions for energy utilisation also raise significant issues. In addition, low-carbon ports, as well as green port models, are becoming increasingly popular in seafaring nations. This study comprises a comprehensive assessment of operational methods, cutting-edge technologies for sustainable generation, storage, and transformation of energy, as well as systems of smart grid management, to develop a green seaport system, obtaining optimum operational efficiency and environmental protection. It is thought that using a holistic method and adaptive management, based on a framework of sustainable and green energy, could stimulate creative thinking, consensus building, and cooperation, as well as streamline the regulatory demands associated with port energy management. Although several aspects of sustainability and green energy could increase initial expenditure, they might result in significant life cycle savings due to decreased consumption of energy and output of emissions, as well as reduced operational and maintenance expenses.
Rocznik
Tom
Strony
165--187
Opis fizyczny
Bibliogr. 196 poz., rys., tab.
Twórcy
  • Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
  • Academy of Politics Region II, Ho Chi Minh City, Viet Nam
  • Gdynia Maritime University, Faculty of Marine Engineering, Gdynia, Poland
  • Gdansk University of Technology, Poland
autor
  • PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
  • PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
autor
  • Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
  • PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
Bibliografia
  • 1. H. P. Nguyen, “Sustainable development of logistics in Vietnam in the period 2020-2025,” Int. J. Innov. Creat. Chang., vol. 11, no. 3, pp. 665–682, 2020.
  • 2. T. E. Notteboom * and J.-P. Rodrigue, “Port regionalization: towards a new phase in port development,” Marit. Policy Manag., vol. 32, no. 3, pp. 297–313, Jul. 2005, doi: 10.1080/03088830500139885.
  • 3. M. Gogas, K. Papoutsis, and E. Nathanail, “Optimization of Decision-Making in Port Logistics Terminals: Using Analytic Hierarchy Process for the Case of Port of Thessaloniki,” Transp. Telecommun. J., vol. 15, no. 4, pp. 255–268, Dec. 2014, doi: 10.2478/ttj-2014-0022.
  • 4. M. Acciaro et al., “Environmental sustainability in seaports: a framework for successful innovation,” Marit. Policy Manag., vol. 41, no. 5, pp. 480–500, Jul. 2014, doi: 10.1080/03088839.2014.932926.
  • 5. J. S. L. Lam and T. Notteboom, “The Greening of Ports: A Comparison of Port Management Tools Used by Leading Ports in Asia and Europe,” Transp. Rev., vol. 34, no. 2, pp. 169–189, Mar. 2014, doi: 10.1080/01441647.2014.891162.
  • 6. E. C. Shin, J. K. Kang, S. H. Kim, and J. J. Park, “Construction technology of environmental sustainable shore and harbor structures using stacked geotextile tube,” KSCE J. Civ. Eng., vol. 20, no. 6, pp. 2095–2102, Sep. 2016, doi: 10.1007/s12205-015-0792-3.
  • 7. H. Johnson and L. Styhre, “Increased energy efficiency in short sea shipping through decreased time in port,” Transp. Res. Part A Policy Pract., vol. 71, pp. 167–178, 2015.
  • 8. A. Di Vaio, L. Varriale, and F. Alvino, “Key performance indicators for developing environmentally sustainable and energy efficient ports: Evidence from Italy,” Energy Policy, vol. 122, pp. 229–240, Nov. 2018, doi: 10.1016/j. enpol.2018.07.046.
  • 9. J. Martínez-Moya, B. Vazquez-Paja, and J. A. Gimenez Maldonado, “Energy efficiency and CO2 emissions of port container terminal equipment: Evidence from the Port of Valencia,” Energy Policy, vol. 131, pp. 312–319, Aug. 2019, doi: 10.1016/j.enpol.2019.04.044.
  • 10. M. Boile, S. Theofanis, E. Sdoukopoulos, and N. Plytas, “Developing a Port Energy Management Plan: Issues, Challenges, and Prospects,” Transp. Res. Rec., vol. 2549, no. 1, pp. 19–28, Jan. 2016, doi: 10.3141/2549-03.
  • 11. D. Gibbs, P. Rigot-Muller, J. Mangan, and C. Lalwani, “The role of sea ports in end-to-end maritime transport chain emissions,” Energy Policy, vol. 64, pp. 337–348, 2014.
  • 12. H. Winnes, L. Styhre, and E. Fridell, “Reducing GHG emissions from ships in port areas,” Res. Transp. Bus. Manag., 2015, doi: 10.1016/j.rtbm.2015.10.008.
  • 13. J. Kim, M. Rahimi, and J. Newell, “Life-Cycle Emissions from Port Electrification: A Case Study of Cargo Handling Tractors at the Port of Los Angeles,” Int. J. Sustain. Transp., vol. 6, no. 6, pp. 321–337, Nov. 2012, doi: 10.1080/15568318.2011.606353.
  • 14. M. Luo and T. L. Yip, “Ports and the environment,” Marit. Policy Manag., vol. 40, no. 5, pp. 401–403, Sep. 2013, doi: 10.1080/03088839.2013.797122.
  • 15. V. D. Tran, A. T. Le, and A. T. Hoang, “An Experimental Study on the Performance Characteristics of a Diesel Engine Fueled with ULSD-Biodiesel Blends.,” Int. J. Renew. Energy Dev., vol. 10, no. 2, pp. 183–190, 2021.
  • 16. A. T. Hoang, V. D. Tran, V. H. Dong, and A. T. Le, “An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultralow-sulphur diesel and Jatropha-based biodiesel,” J. Mar. Eng. Technol., vol. 21, no. 2, pp. 73–81, Mar. 2022, doi: 10.1080/20464177.2019.1595355.
  • 17. J.-K. Woo, D. S. H. Moon, and J. S. L. Lam, “The impact of environmental policy on ports and the associated economic opportunities,” Transp. Res. Part A Policy Pract., vol. 110, pp. 234–242, 2018.
  • 18. J. M. . Low and S. W. Lam, “Evaluations of port performances from a seaborne cargo supply chain perspective,” Polish Marit. Res., vol. 20, no. Special-Issue, pp. 20–31, Jul. 2013, doi: 10.2478/pomr-2013-0024.
  • 19. G. Wilmsmeier and T. Spengler, “Energy consumption and container terminal efficiency,” 2016.
  • 20. G. Parise, L. Parise, A. Malerba, F. M. Pepe, A. Honorati, and P. Ben Chavdarian, “Comprehensive peak-shaving solutions for port cranes,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 1799–1806, 2016.
  • 21. E. Sdoukopoulos, M. Boile, A. Tromaras, and N. Anastasiadis, “Energy Efficiency in European Ports: State-Of-Practice and Insights on the Way Forward,” Sustainability, vol. 11, no. 18, p. 4952, Sep. 2019, doi: 10.3390/su11184952.
  • 22. A. E. Tironi, B. M. Corti, and C. G. Ubezio, “A novel approach in multi-port DC/DC converter control,” in 2015 International Conference on Clean Electrical Power (ICCEP), Jun. 2015, pp. 48–54, doi: 10.1109/ ICCEP.2015.7177599.
  • 23. X. P. Nguyen and A. T. Hoang, “The Flywheel Energy Storage System: An Effective Solution to Accumulate Renewable Energy,” 2020 6th Int. Conf. Adv. Comput. Commun. Syst., pp. 1322–1328, Mar. 2020, doi: 10.1109/ ICACCS48705.2020.9074469.
  • 24. L. Xu, Y. Zhang, and X. Wen, “Multioperational Modes and Control Strategies of Dual-Mechanical-Port Machine for Hybrid Electrical Vehicles,” IEEE Trans. Ind. Appl., vol. 45, no. 2, pp. 747–755, 2009, doi: 10.1109/ TIA.2009.2013575.
  • 25. X. Ren, D. Li, R. Qu, W. Kong, X. Han, and T. Pei, “Analysis of Spoke-Type Brushless Dual-Electrical-Port DualMechanical-Port Machine With Decoupled Windings,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6128–6140, Aug. 2019, doi: 10.1109/TIE.2018.2870395.
  • 26. N. Sifakis, S. Konidakis, and T. Tsoutsos, “Hybrid renewable energy system optimum design and smart dispatch for nearly Zero Energy Ports,” J. Clean. Prod., vol. 310, p. 127397, Aug. 2021, doi: 10.1016/j.jclepro.2021.127397.
  • 27. K.-L. A. Yau, S. Peng, J. Qadir, Y.-C. Low, and M. H. Ling, “Towards Smart Port Infrastructures: Enhancing Port Activities Using Information and Communications Technology,” IEEE Access, vol. 8, pp. 83387–83404, 2020, doi: 10.1109/ACCESS.2020.2990961.
  • 28. A. Manos, “How the Vision of a Distribution System Operator Encompasses the Green Energy Transformation of Ports [Technology Leaders],” IEEE Electrif. Mag., vol. 11, no. 1, pp. 6–91, Mar. 2023, doi: 10.1109/ MELE.2022.3232922.
  • 29. G.-Y. Gan, H.-S. Lee, Y.-J. Tao, and C.-S. Tu, “Selecting Suitable, Green Port Crane Equipment for International Commercial Ports,” Sustainability, vol. 13, no. 12, p. 6801, Jun. 2021, doi: 10.3390/su13126801.
  • 30. T. P. V. Zis, “Prospects of cold ironing as an emissions reduction option,” Transp. Res. Part A Policy Pract., 2019, doi: 10.1016/j.tra.2018.11.003.
  • 31. R. Winkel, U. Weddige, D. Johnsen, V. Hoen, and S. Papaefthimiou, “Shore Side Electricity in Europe: Potential and environmental benefits,” Energy Policy, 2016, doi: 10.1016/j.enpol.2015.07.013.
  • 32. E. A. Sciberras, B. Zahawi, and D. J. Atkinson, “Electrical characteristics of cold ironing energy supply for berthed ships,” Transp. Res. Part D Transp. Environ., vol. 39, pp. 31–43, 2015.
  • 33. A. Innes and J. Monios, “Identifying the unique challenges of installing cold ironing at small and medium ports–The case of Aberdeen,” Transp. Res. Part D Transp. Environ., vol. 62, pp. 298–313, 2018.
  • 34. R. Bergqvist and J. Monios, “Green ports in theory and practice,” in Green ports, Elsevier, 2019, pp. 1–17.
  • 35. WCPI, “Existing Fleet and Current Orderbooks,” 2018.
  • 36. Z. Korczewski, “Energy and Emission Quality Ranking of Newly Produced Low-Sulphur Marine Fuels,” Polish Marit. Res., vol. 29, no. 4, pp. 77–87, Dec. 2022, doi: 10.2478/pomr-2022-0045.
  • 37. A. T. Hoang, “Applicability of fuel injection techniques for modern diesel engines,” in International Conference on Sustainable Manufacturing, Materials and Technologies, ICSMMT 2019, 2020, p. 020018, doi: 10.1063/5.0000133.
  • 38. Z. Yang, Q. Tan, and P. Geng, “Combustion and Emissions Investigation on Low-Speed Two-Stroke Marine Diesel Engine with Low Sulfur Diesel Fuel,” Polish Marit. Res., vol. 26, no. 1, 2019, doi: 10.2478/pomr-2019-0017.
  • 39. V. V. Pham and A. T. Hoang, “Technological perspective for reducing emissions from marine engines,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 6, pp. 1989–2000, 2019.
  • 40. T. Zis, R. J. North, P. Angeloudis, W. Y. Ochieng, and M. G. H. Bell, “Evaluation of cold ironing and speed reduction policies to reduce ship emissions near and at ports,” Marit. Econ. Logist., vol. 16, no. 4, pp. 371–398, 2014.
  • 41. T. Coppola, M. Fantauzzi, S. Miranda, and F. Quaranta, “Cost/benefit analysis of alternative systems for feeding electric energy to ships in port from ashore,” in 2016 AEIT International Annual Conference (AEIT), 2016, pp. 1–7.
  • 42. C.-C. Chang and C.-M. Wang, “Evaluating the effects of green port policy: Case study of Kaohsiung harbor in Taiwan,” Transp. Res. Part D Transp. Environ., vol. 17, no. 3, pp. 185–189, 2012.
  • 43. K. Yiğit, G. Kökkülünk, A. Parlak, and A. Karakaş, “Energy cost assessment of shoreside power supply considering the smart grid concept: a case study for a bulk carrier ship,” Marit. Policy Manag., vol. 43, no. 4, pp. 469–482, 2016.
  • 44. P.-H. Tseng and N. Pilcher, “A study of the potential of shore power for the port of Kaohsiung, Taiwan: to introduce or not to introduce?,” Res. Transp. Bus. Manag., vol. 17, pp. 83–91, 2015.
  • 45. F. Ballini and R. Bozzo, “Air pollution from ships in ports: The socio-economic benefit of cold-ironing technology,” Res. Transp. Bus. Manag., vol. 17, pp. 92–98, 2015.
  • 46. S. Gucma, “Conditions of Safe Ship Operation in Seaports – Optimization of Port Waterway Parameters,” Polish Marit. Res., vol. 26, no. 3, pp. 22–29, Sep. 2019, doi: 10.2478/pomr-2019-0042.
  • 47. W. J. Hall, “Assessment of CO2 and priority pollutant reduction by installation of shoreside power,” Resour. Conserv. Recycl., vol. 54, no. 7, pp. 462–467, 2010.
  • 48. M. Acciaro and G. Wilmsmeier, “Energy efficiency in maritime logistics chains,” Res. Transp. Bus. Manag., no. 17, pp. 1–7, 2015.
  • 49. J. H. R. R. van Duin, H. H. Geerlings, A. A. Verbraeck, and T. T. Nafde, “Cooling down: A simulation approach to reduce energy peaks of reefers at terminals,” J. Clean. Prod., vol. 193, pp. 72–86, 2018.
  • 50. Ç. Iris and J. S. L. Lam, “A review of energy efficiency in ports: Operational strategies, technologies and energy management systems,” Renew. Sustain. Energy Rev., vol. 112, pp. 170–182, 2019.
  • 51. J. C. Rijsenbrij and A. Wieschemann, “Sustainable container terminals: a design approach,” in Handbook of terminal planning, Springer, 2011, pp. 61–82.
  • 52. G. Wilmsmeier, J. Froese, A. Zotz, and A. Meyer, “Energy consumption and efficiency: emerging challenges from reefer trade in South American container terminals,” FAL Bull., vol. 1, no. 329, p. 9, 2014.
  • 53. S. Hartmann, “Scheduling reefer mechanics at container terminals,” Transp. Res. Part E Logist. Transp. Rev., vol. 51, pp. 17–27, 2013.
  • 54. S. Fang, Y. Wang, B. Gou, and Y. Xu, “Toward future green maritime transportation: An overview of seaport microgrids and all-electric ships,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 207–219, 2019.
  • 55. J. He, “Berth allocation and quay crane assignment in a container terminal for the trade-off between time-saving and energy-saving,” Adv. Eng. Informatics, vol. 30, no. 3, pp. 390–405, Aug. 2016, doi: 10.1016/j.aei.2016.04.006.
  • 56. A. Mao, T. Yu, Z. Ding, S. Fang, J. Guo, and Q. Sheng, “Optimal scheduling for seaport integrated energy system considering flexible berth allocation,” Appl. Energy, vol. 308, p. 118386, Feb. 2022, doi: 10.1016/j. apenergy.2021.118386.
  • 57. C. Basu et al., “Sensor-Based Predictive Modeling for Smart Lighting in Grid-Integrated Buildings,” IEEE Sens. J., vol. 14, no. 12, pp. 4216–4229, Dec. 2014, doi: 10.1109/ JSEN.2014.2352331.
  • 58. A. Rosemann, “The Energy Saving Potential of OccupancyBased Lighting Control Strategies in Open-Plan Offices: The Influence of Occupancy Patterns,” Energies, vol. 11, no. 1, p. 2, Dec. 2017, doi: 10.3390/en11010002.
  • 59. S. Bunjongjit and A. Ngaopitakkul, “Feasibility Study and Impact of Daylight on Illumination Control for EnergySaving Lighting Systems,” Sustainability, vol. 10, no. 11, p. 4075, Nov. 2018, doi: 10.3390/su10114075.
  • 60. R. Bardhan and R. Debnath, “Towards daylight inclusive bye-law: Daylight as an energy saving route for affordable housing in India,” Energy Sustain. Dev., vol. 34, pp. 1–9, Oct. 2016, doi: 10.1016/j.esd.2016.06.005.
  • 61. Y. Gao, Y. Cheng, H. Zhang, and N. Zou, “Dynamic illuminance measurement and control used for smart lighting with LED,” Measurement, vol. 139, pp. 380–386, Jun. 2019, doi: 10.1016/j.measurement.2019.03.003.
  • 62. C. Yin, S. Dadras, X. Huang, J. Mei, H. Malek, and Y. Cheng, “Energy-saving control strategy for lighting system based on multivariate extremum seeking with Newton algorithm,” Energy Convers. Manag., vol. 142, pp. 504–522, Jun. 2017, doi: 10.1016/j.enconman.2017.03.072.
  • 63. S. Gorgulu and S. Kocabey, “An energy saving potential analysis of lighting retrofit scenarios in outdoor lighting systems: A case study for a university campus,” J. Clean. Prod., vol. 260, p. 121060, Jul. 2020, doi: 10.1016/j. jclepro.2020.121060.
  • 64. N. Sifakis, K. Kalaitzakis, and T. Tsoutsos, “Integrating a novel smart control system for outdoor lighting infrastructures in ports,” Energy Convers. Manag., vol. 246, p. 114684, Oct. 2021, doi: 10.1016/j.enconman.2021.114684.
  • 65. G. P. Gobbi, L. Di Liberto, and F. Barnaba, “Impact of port emissions on EU-regulated and non-regulated air quality indicators: The case of Civitavecchia (Italy),” Sci. Total Environ., vol. 719, p. 134984, Jun. 2020, doi: 10.1016/j. scitotenv.2019.134984.
  • 66. M. Halper, “Dutch Port Taps Smart Street Lighting,” 2017.
  • 67. N. Sifakis and T. Tsoutsos, “Can a medium-sized Mediterranean port be green and energy-independent?,” 2021.
  • 68. W. Pan and J. Du, “Impacts of urban morphological characteristics on nocturnal outdoor lighting environment in cities: An empirical investigation in Shenzhen,” Build. Environ., vol. 192, p. 107587, Apr. 2021, doi: 10.1016/j. buildenv.2021.107587.
  • 69. P. Zajac and G. Przybylek, “Lighting lamps in recreational areas – Damage and prevention, testing and modelling,” Eng. Fail. Anal., vol. 115, p. 104693, Sep. 2020, doi: 10.1016/j.engfailanal.2020.104693.
  • 70. A. Misra, K. Panchabikesan, S. K. Gowrishankar, E. Ayyasamy, and V. Ramalingam, “GHG emission accounting and mitigation strategies to reduce the carbon footprint in conventional port activities–a case of the Port of Chennai,” Carbon Manag., vol. 8, no. 1, pp. 45–56, 2017.
  • 71. J. Froese, S. Toter, and I. Erdogan, “Green and effective operations at terminals and in ports (Green EFFORTS) project,” GreenPort Mag. Hampsh., 2011.
  • 72. M. Acciaro, H. Ghiara, and M. I. Cusano, “Energy management in seaports: A new role for port authorities,” Energy Policy, vol. 71, pp. 4–12, 2014.
  • 73. R. M. A. Hollen, F. A. J. Van Den Bosch, and H. W. Volberda, “Strategic levers of port authorities for industrial ecosystem development,” Marit. Econ. Logist., vol. 17, no. 1, pp. 79–96, 2015.
  • 74. J. Bakker, D. M. Frangopol, and K. Breugel, Life-Cycle of Engineering Systems: Emphasis on Sustainable Civil Infrastructure. London: CRC Press, 2016.
  • 75. E. I. Froese Jens, Toter Svenja, “Green and effective operations at terminals and in ports, green efforts project Technical report 2014,” 2014.
  • 76. B. Hu, “Application of Evaluation Algorithm for Port Logistics Park Based on Pca-Svm Model,” Polish Marit. Res., vol. 25, no. s3, pp. 29–35, Dec. 2018, doi: 10.2478/ pomr-2018-0109.
  • 77. M. Budzyński, D. Ryś, and W. Kustra, “Selected Problems of Transport in Port Towns – Tri-City as an Example,” Polish Marit. Res., vol. 24, no. s1, pp. 16–24, Apr. 2017, doi: 10.1515/pomr-2017-0016.
  • 78. D. Steenken, S. Voß, and R. Stahlbock, “Container terminal operation and operations research-a classification and literature review,” OR Spectr., vol. 26, no. 1, pp. 3–49, 2004.
  • 79. C. Bierwirth and F. Meisel, “A follow-up survey of berth allocation and quay crane scheduling problems in container terminals,” Eur. J. Oper. Res., vol. 244, no. 3, pp. 675–689, 2015.
  • 80. P. Alderton and G. Saieva, Port management and operations. Taylor & Francis, 2013.
  • 81. A. T. Hoang et al., “Energy-related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway,” J. Clean. Prod., vol. 355, p. 131772, Jun. 2022, doi: 10.1016/j.jclepro.2022.131772.
  • 82. M. Wei, J. He, C. Tan, J. Yue, and H. Yu, “Quay crane scheduling with time windows constraints for automated container port,” Ocean Coast. Manag., vol. 231, p. 106401, Jan. 2023, doi: 10.1016/j.ocecoaman.2022.106401.
  • 83. D. Chang, Z. Jiang, W. Yan, and J. He, “Integrating berth allocation and quay crane assignments,” Transp. Res. Part E Logist. Transp. Rev., vol. 46, no. 6, pp. 975–990, 2010.
  • 84. Ç. Iris, D. Pacino, S. Ropke, and A. Larsen, “Integrated berth allocation and quay crane assignment problem: Set partitioning models and computational results,” Transp. Res. Part E Logist. Transp. Rev., vol. 81, pp. 75–97, 2015.
  • 85. Ç. Iris, D. Pacino, and S. Ropke, “Improved formulations and an adaptive large neighborhood search heuristic for the integrated berth allocation and quay crane assignment problem,” Transp. Res. Part E Logist. Transp. Rev., vol. 105, pp. 123–147, 2017.
  • 86. D. Liu, Z. Shi, and W. Ai, “An improved car-following model accounting for impact of strong wind,” Math. Probl. Eng., vol. 2017, 2017.
  • 87. C. C. Chang and C. W. Jhang, “Reducing speed and fuel transfer of the green flag incentive program in kaohsiung port taiwan,” Transp. Res. Part D Transp. Environ., vol. 46, pp. 1–10, 2016.
  • 88. Y. Du, Q. Chen, J. S. L. Lam, Y. Xu, and J. X. Cao, “Modeling the impacts of tides and the virtual arrival policy in berth allocation,” Transp. Sci., vol. 49, no. 4, pp. 939–956, 2015.
  • 89. G. Venturini, Ç. Iris, C. A. Kontovas, and A. Larsen, “The multi-port berth allocation problem with speed optimization and emission considerations,” Transp. Res. Part D Transp. Environ., vol. 54, pp. 142–159, 2017.
  • 90. D.-H. Lee, Z. Cao, and Q. Meng, “Scheduling of twotranstainer systems for loading outbound containers in port container terminals with simulated annealing algorithm,” Int. J. Prod. Econ., vol. 107, no. 1, pp. 115–124, 2007.
  • 91. J. He, Y. Huang, and W. Yan, “Yard crane scheduling in a container terminal for the trade-off between efficiency and energy consumption,” Adv. Eng. Informatics, vol. 29, no. 1, pp. 59–75, 2015.
  • 92. M. Sha et al., “Scheduling optimization of yard cranes with minimal energy consumption at container terminals,” Comput. Ind. Eng., vol. 113, pp. 704–713, 2017.
  • 93. J. Xin, R. R. Negenborn, and G. Lodewijks, “Hybrid MPC for balancing throughput and energy consumption in an automated container terminal,” in 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), 2013, pp. 1238–1244.
  • 94. J. Xin, R. R. Negenborn, and G. Lodewijks, “Energyaware control for automated container terminals using integrated flow shop scheduling and optimal control,” Transp. Res. Part C Emerg. Technol., vol. 44, pp. 214–230, 2014.
  • 95. J. Xin, R. R. Negenborn, and G. Lodewijks, “Event-driven receding horizon control for energy-efficient container handling,” Control Eng. Pract., vol. 39, pp. 45–55, 2015.
  • 96. H. Geerlings, R. Heij, and R. van Duin, “Opportunities for peak shaving the energy demand of ship-to-shore quay cranes at container terminals,” J. Shipp. Trade, vol. 3, no. 1, pp. 1–20, 2018.
  • 97. B. Wen, W. Xia, and J. M. Sokolovic, “Recent advances in effective collectors for enhancing the flotation of low rank/ oxidized coals,” Powder Technol., vol. 319, pp. 1–11, 2017.
  • 98. A. H. Gharehgozli, D. Roy, and R. De Koster, “Sea container terminals: New technologies and OR models,” Marit. Econ. Logist., vol. 18, no. 2, pp. 103–140, 2016.
  • 99. T. Robenek, N. Umang, M. Bierlaire, and S. Ropke, “A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports,” Eur. J. Oper. Res., vol. 235, no. 2, pp. 399–411, 2014.
  • 100. Y.-C. Yang and W.-M. Chang, “Impacts of electric rubbertired gantries on green port performance,” Res. Transp. Bus. Manag., vol. 8, pp. 67–76, 2013.
  • 101. M. M. Flynn, P. McMullen, and O. Solis, “Saving energy using flywheels,” IEEE Ind. Appl. Mag., vol. 14, no. 6, pp. 69–76, 2008.
  • 102. K. H. Tan and F. F. Yap, “Reducing Fuel Consumption Using Flywheel Battery Technology for Rubber Tyred Gantry Cranes in Container Terminals,” 2017.
  • 103. S. Pietrosanti, I. Harrison, A. Luque, W. Holderbaum, and V. M. Becerra, “Net energy savings in Rubber Tyred Gantry cranes equipped with an active front end,” in 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), 2016, pp. 1–5.
  • 104. M. Antonelli, M. Ceraolo, U. Desideri, G. Lutzemberger, and L. Sani, “Hybridization of rubber tired gantry (RTG) cranes,” J. Energy Storage, vol. 12, pp. 186–195, 2017.
  • 105. M. B. Lazic, “Is the Semi-Automated or Automated Rail Mounted Gantry Operation a Green Terminal?,” Am. Assoc. Port Authorities, 2006.
  • 106. Y.-C. Yang and C.-L. Lin, “Performance analysis of cargohandling equipment from a green container terminal perspective,” Transp. Res. Part D Transp. Environ., vol. 23, pp. 9–11, 2013. 107. Y.-C. Yang, “Operating strategies of CO2 reduction for a container terminal based on carbon footprint perspective,” J. Clean. Prod., vol. 141, pp. 472–480, 2017.
  • 108. D. Bechtsis, N. Tsolakis, D. Vlachos, and E. Iakovou, “Sustainable supply chain management in the digitalisation era: The impact of Automated Guided Vehicles,” J. Clean. Prod., vol. 142, pp. 3970–3984, 2017.
  • 109. J. Schmidt, C. Meyer-Barlag, M. Eisel, L. M. Kolbe, and H.-J. Appelrath, “Using battery-electric AGVs in container terminals—Assessing the potential and optimizing the economic viability,” Res. Transp. Bus. Manag., vol. 17, pp. 99–111, 2015.
  • 110. S. Anwar, M. Y. I. Zia, M. Rashid, G. Z. de Rubens, and P. Enevoldsen, “Towards Ferry Electrification in the Maritime Sector,” Energies, vol. 13, no. 24, p. 6506, Dec. 2020, doi: 10.3390/en13246506.
  • 111. L. Zhen, L. H. Lee, E. P. Chew, D.-F. Chang, and Z.-X. Xu, “A comparative study on two types of automated container terminal systems,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 1, pp. 56–69, 2011.
  • 112. B. M. Al-Alawi and T. H. Bradley, “Review of hybrid, plug-in hybrid, and electric vehicle market modeling studies,” Renew. Sustain. Energy Rev., vol. 21, pp. 190–203, 2013.
  • 113. N. P. Reddy et al., “Zero-Emission Autonomous Ferries for Urban Water Transport: Cheaper, Cleaner Alternative to Bridges and Manned Vessels,” IEEE Electrif. Mag., vol. 7, no. 4, pp. 32–45, Dec. 2019, doi: 10.1109/ MELE.2019.2943954.
  • 114. H. A. Gabbar, A. H. Fahad, and A. M. Othman, “Design of Test Platform of Connected-Autonomous Vehicles and Transportation Electrification,” in Recent Trends in Intelligent Computing, Communication and Devices. Advances in Intelligent Systems and Computing, 2020, pp. 1035–1046.
  • 115. A. Misra, K. Panchabikesan, E. Ayyasamy, and V. Ramalingam, “Sustainability and environmental management: Emissions accounting for ports,” Strateg. Plan. Energy Environ., vol. 37, no. 1, pp. 8–26, 2017.
  • 116. Fundacion Valencia port, “SEA TERMINALS – SMART, ENERGY EFFICIENCY AND ADAPTIVE PORT TERMINALS,” 2015.
  • 117. N. Grundmeier, A. Hahn, N. Ihle, S. Runge, and C. MeyerBarlag, “A simulation based approach to forecast a demand load curve for a container terminal using battery powered vehicles,” in 2014 International Joint Conference on Neural Networks (IJCNN), 2014, pp. 1711–1718.
  • 118. F. Alasali, S. Haben, V. Becerra, and W. Holderbaum, “Analysis of RTG crane load demand and short-term load forecasting,” Int J Comput Commun Instrumen Eng, vol. 3, no. 2, pp. 448–454, 2016.
  • 119. H. Geerlings and R. Van Duin, “A new method for assessing CO2-emissions from container terminals: a promising approach applied in Rotterdam,” J. Clean. Prod., vol. 19, no. 6–7, pp. 657–666, 2011.
  • 120. Y. Tian and Q. Zhu, “GHG emission assessment of Chinese container terminals: a hybrid approach of IPCC and inputoutput analysis,” Int. J. Shipp. Transp. Logist., vol. 7, no. 6, pp. 758–779, 2015.
  • 121. Y.-T. Chang, Y. Song, and Y. Roh, “Assessing greenhouse gas emissions from port vessel operations at the Port of Incheon,” Transp. Res. Part D Transp. Environ., vol. 25, pp. 1–4, 2013.
  • 122. J.-H. Na, A.-Y. Choi, J. Ji, and D. Zhang, “Environmental efficiency analysis of Chinese container ports with CO2 emissions: An inseparable input-output SBM model,” J. Transp. Geogr., vol. 65, pp. 13–24, 2017.
  • 123. K. Rudzki, P. Gomulka, and A. T. Hoang, “Optimization Model to Manage Ship Fuel Consumption and Navigation Time,” Polish Marit. Res., vol. 29, no. 3, pp. 141–153, Sep. 2022, doi: 10.2478/pomr-2022-0034.
  • 124. H. Yu, Y.-E. Ge, J. Chen, L. Luo, C. Tan, and D. Liu, “CO2 emission evaluation of yard tractors during loading at container terminals,” Transp. Res. Part D Transp. Environ., vol. 53, pp. 17–36, 2017.
  • 125. W. Li, W. Liu, X. Xu, and Z. Gao, “The Port Service Ecosystem Research Based on the Lotka-Volterra Model,” Polish Marit. Res., vol. 24, no. s3, pp. 86–94, Nov. 2017, doi: 10.1515/pomr-2017-0109.
  • 126. C.-H. Liao, P.-H. Tseng, K. Cullinane, and C.-S. Lu, “The impact of an emerging port on the carbon dioxide emissions of inland container transport: An empirical study of Taipei port,” Energy Policy, vol. 38, no. 9, pp. 5251–5257, 2010.
  • 127. A. Rolan, P. Manteca, R. Oktar, and P. Siano, “Integration of Cold Ironing and Renewable Sources in the Barcelona Smart Port,” IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 7198–7206, Nov. 2019, doi: 10.1109/TIA.2019.2910781.
  • 128. G. Buiza, S. Cepolina, A. Dobrijevic, M. del Mar Cerbán, O. Djordjevic, and C. González, “Current situation of the Mediterranean container ports regarding the operational, energy and environment areas,” in 2015 International Conference on Industrial Engineering and Systems Management (IESM), 2015, pp. 530–536.
  • 129. G. Parise, L. Parise, L. Martirano, P. Ben Chavdarian, C. L. Su, and A. Ferrante, “Wise port and business energy management: Port facilities, electrical power distribution,” IEEE Trans. Ind. Appl., 2016, doi: 10.1109/ TIA.2015.2461176.
  • 130. S. G. Gennitsaris and F. D. Kanellos, “Emission-Aware and Cost-Effective Distributed Demand Response System for Extensively Electrified Large Ports,” IEEE Trans. Power Syst., vol. 34, no. 6, pp. 4341–4351, Nov. 2019, doi: 10.1109/ TPWRS.2019.2919949.
  • 131. J. Prousalidis et al., “The ports as smart micro-grids: development perspectives,” Proc. ΗΑΕΕ, pp. 12–16, 2017.
  • 132. A. Alzahrani, I. Petri, Y. Rezgui, and A. Ghoroghi, “Optimal control-based price strategies for smart fishery ports micro-grids,” in 2021 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Jun. 2021, pp. 1–8, doi: 10.1109/ICE/ ITMC52061.2021.9570267.
  • 133. M. Canepa, G. Frugone, and R. Bozzo, “Smart Micro-Grid: An Effective Tool for Energy Management in Ports,” in Trends and Challenges in Maritime Energy Management, 2018, pp. 275–293.
  • 134. T. Lamberti, A. Sorce, L. Di Fresco, and S. Barberis, “Smart port: Exploiting renewable energy and storage potential of moored boats,” in OCEANS 2015 - Genova, May 2015, pp. 1–3, doi: 10.1109/OCEANS-Genova.2015.7271376.
  • 135. S. Mumtaz, S. Ali, S. Ahmad, L. Khan, S. Hassan, and T. Kamal, “Energy Management and Control of Plug-In Hybrid Electric Vehicle Charging Stations in a GridConnected Hybrid Power System,” Energies, vol. 10, no. 11, p. 1923, Nov. 2017, doi: 10.3390/en10111923.
  • 136. J. Y. Yong, V. K. Ramachandaramurthy, K. M. Tan, and N. Mithulananthan, “Bi-directional electric vehicle fast charging station with novel reactive power compensation for voltage regulation,” Int. J. Electr. Power Energy Syst., vol. 64, pp. 300–310, Jan. 2015, doi: 10.1016/j. ijepes.2014.07.025.
  • 137. L. Tan, B. Wu, V. Yaramasu, S. Rivera, and X. Guo, “Effective Voltage Balance Control for Bipolar-DC-BusFed EV Charging Station With Three-Level DC–DC Fast Charger,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4031–4041, Jul. 2016, doi: 10.1109/TIE.2016.2539248.
  • 138. N. B. Ahamad, M. Othman, J. C. Vasquez, J. M. Guerrero, and C.-L. Su, “Optimal sizing and performance evaluation of a renewable energy based microgrid in future seaports,” in 2018 IEEE International Conference on Industrial Technology (ICIT), Feb. 2018, pp. 1043–1048, doi: 10.1109/ ICIT.2018.8352322.
  • 139. J. Kumar, O. Palizban, and K. Kauhaniemi, “Designing and analysis of innovative solutions for harbour area smart grid,” in 2017 IEEE Manchester PowerTech, Jun. 2017, pp. 1–6, doi: 10.1109/PTC.2017.7980870.
  • 140. K. Hein, Y. Xu, W. Gary, and A. K. Gupta, “Robustly coordinated operational scheduling of a grid‐connected seaport microgrid under uncertainties,” IET Gener. Transm. Distrib., vol. 15, no. 2, pp. 347–358, Jan. 2021, doi: 10.1049/gtd2.12025.
  • 141. V. Duc Bui, H. Phuong Nguyen, X. Phuong Nguyen, and H. Chi Minh city, “Optimization of energy management systems in seaports as a potential strategy for sustainable development,” J. Mech. Eng. Res. Dev., vol. 44, no. 8, pp. 19–30, 2021.
  • 142. H. Jiang, W. Xiong, and Y. Cao, “A Conceptual Model of Excellent Performance Mode of Port Enterprise Logistics Management,” Polish Marit. Res., vol. 24, no. s3, pp. 34–40, Nov. 2017, doi: 10.1515/pomr-2017-0102.
  • 143. A. Alzahrani, I. Petri, Y. Rezgui, and A. Ghoroghi, “Decarbonisation of seaports: A review and directions for future research,” Energy Strateg. Rev., vol. 38, p. 100727, Nov. 2021, doi: 10.1016/j.esr.2021.100727.
  • 144. B. Akgul, “Green Port / Eco Port Project - Applications and Procedures in Turkey,” IOP Conf. Ser. Earth Environ. Sci., vol. 95, p. 042063, Dec. 2017, doi: 10.1088/1755-1315/95/4/042063.
  • 145. L. Fobbe, R. Lozano, and A. Carpenter, “Assessing the coverage of sustainability reports: An analysis of sustainability in seaports,” SPONSORS, p. 609, 2019.
  • 146. European Sea Ports Organization, “ESPO Green Guide: Towards Excellence in Port Environmental Management and Sustainability,” EcoPorts Publications, 2012.
  • 147. V. D. Bui and H. P. Nguyen, “Role of Inland Container Depot System in Developing the Sustainable Transport System,” Int. J. Knowledge-Based Dev., vol. 12, no. 3/4, p. 1, 2022, doi: 10.1504/IJKBD.2022.10053121.
  • 148. H. P. Nguyen, “What solutions should be applied to improve the efficiency in the management for port system in Ho Chi Minh City?,” Int. J. Innov. Creat. Chang., vol. 5, no. 2, pp. 1747–1769, 2019.
  • 149. T. T. M. Nguyen, H. P. Nguyen, and V. D. Bui, “Recent Applications for Improving the Last-Mile Delivery in Urbanism Logistics,” Int. J. Knowledge-Based Dev., vol. 12, no. 3/4, p. 1, 2022, doi: 10.1504/IJKBD.2022.10052410.
  • 150. V. D. Bui and H. P. Nguyen, “A Systematized Review on Rationale and Experience to Develop Advanced Logistics Center System in Vietnam,” Webology, vol. 18, pp. 89–101, 2021.
  • 151. IAPH, “IAPH Tool Box for Greenhouse Gasses,” EIA, 2008.
  • 152. H. P. Nguyen, P. Q. P. Nguyen, and T. P. Nguyen, “Green Port Strategies in Developed Coastal Countries as Useful Lessons for the Path of Sustainable Development: A case study in Vietnam,” Int. J. Renew. Energy Dev., vol. 11, no. 4, pp. 950–962, Nov. 2022, doi: 10.14710/ijred.2022.46539.
  • 153. Organisation for Economic Cooperation and Development, The Competitiveness of Global Port-Cities. Paris, France: OECD, 2014.
  • 154. M. Hermans, W. Haynes, and J. Childs, “Port of Portland’s Changes in Maintenance Dredging: Barge Unloading and the New Dredged Material Rehandling Facility,” in Dredging ’02, Oct. 2003, pp. 1–15, doi: 10.1061/40680(2003)95.
  • 155. A. S. Alamoush, F. Ballini, and A. I. Ölçer, “Ports’ technical and operational measures to reduce greenhouse gas emission and improve energy efficiency: A review,” Mar. Pollut. Bull., vol. 160, p. 111508, Nov. 2020, doi: 10.1016/j. marpolbul.2020.111508.
  • 156. G. Villalba and E. D. Gemechu, “Estimating GHG emissions of marine ports—the case of Barcelona,” Energy Policy, vol. 39, no. 3, pp. 1363–1368, 2011.
  • 157. D. Chen et al., “Estimating ship emissions based on AIS data for port of Tianjin, China,” Atmos. Environ., 2016, doi: 10.1016/j.atmosenv.2016.08.086.
  • 158. A. T. Hoang, V. V. Pham, and X. P. Nguyen, “Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process,” J. Clean. Prod., vol. 305, p. 127161, Jul. 2021, doi: 10.1016/j. jclepro.2021.127161.
  • 159. I. S. Seddiek, “Application of renewable energy technologies for eco-friendly sea ports,” Ships Offshore Struct., vol. 15, no. 9, pp. 953–962, Oct. 2020, doi: 10.1080/17445302.2019.1696535.
  • 160. V. Ramos, R. Carballo, M. Álvarez, M. Sánchez, and G. Iglesias, “A port towards energy self-sufficiency using tidal stream power,” Energy, vol. 71, pp. 432–444, Jul. 2014, doi: 10.1016/j.energy.2014.04.098.
  • 161. T. Notteboom, “The adaptive capacity of container ports in an era of mega vessels: The case of upstream seaports Antwerp and Hamburg,” J. Transp. Geogr., vol. 54, pp. 295–309, Jun. 2016, doi: 10.1016/j.jtrangeo.2016.06.002.
  • 162. T. Notteboom, L. van der Lugt, N. van Saase, S. Sel, and K. Neyens, “The Role of Seaports in Green Supply Chain Management: Initiatives, Attitudes, and Perspectives in Rotterdam, Antwerp, North Sea Port, and Zeebrugge,” Sustainability, vol. 12, no. 4, p. 1688, Feb. 2020, doi: 10.3390/su12041688.
  • 163. A. Molavi, G. J. Lim, and B. Race, “A framework for building a smart port and smart port index,” Int. J. Sustain. Transp., vol. 14, no. 9, pp. 686–700, Jul. 2020, doi: 10.1080/15568318.2019.1610919.
  • 164. M. Hentschel, W. Ketter, and J. Collins, “Renewable energy cooperatives: Facilitating the energy transition at the Port of Rotterdam,” Energy Policy, 2018, doi: 10.1016/j. enpol.2018.06.014.
  • 165. The Pure Energy, “Innovative Green Technologies for a Sustainable Harbour: E-Harbours towards Sustainable, Clean and Energetic Innovative Harbour Cities in the North Sea Region,” 2012.
  • 166. PIANC, “Renewables and Energy Efficiency for Maritime Ports - MarCom WG Report n° 159-2019. The World Association for Waterborne Transport Infrastructure,” Brussels, Belguim, 2019.
  • 167. S. FAHDI, M. ELKHECHAFI, and H. HACHIMI, “Green Port in Blue Ocean: Optimization of Energy in Asian Ports,” in 2019 5th International Conference on Optimization and Applications (ICOA), Apr. 2019, pp. 1–4, doi: 10.1109/ICOA.2019.8727615.
  • 168. G. Buiza, S. Cepolina, A. Dobrijevic, M. del Mar Cerban, O. Djordjevic, and C. Gonzalez, “Current situation of the Mediterranean container ports regarding the operational, energy and environment areas,” in International Conference on Industrial Engineering and Systems Management (IESM), Oct. 2015, pp. 530–536, doi: 10.1109/ IESM.2015.7380209.
  • 169. B. Ports and O. Conference, Smart energy efficient and adaptive port terminals (Sea Terminals), no. December 2014. Estonia, Spain, Italy, the Netherlands, 2015, p. 1.
  • 170. Federal Ministry for Economic Affairs and Energy, “Maritime Agenda 2025,” 2017.
  • 171. HPA, “Energy cooperation, port of Hamburg,” 2015.
  • 172. X. Li et al., “A method for optimizing installation capacity and operation strategy of a hybrid renewable energy system with offshore wind energy for a green container terminal,” Ocean Eng., vol. 186, p. 106125, Aug. 2019, doi: 10.1016/j.oceaneng.2019.106125.
  • 173. G. Efforts, “Green and Effective Operations at Terminals and in Ports -deliverable 12.1- Recommendations Manual for Terminals. European Commission,” 2014.
  • 174. M. Melikoglu, “Current status and future of ocean energy sources: A global review,” Ocean Engineering. 2018, doi: 10.1016/j.oceaneng.2017.11.045.
  • 175. H. S. Tang, K. Qu, G. Q. Chen, S. Kraatz, N. Aboobaker, and C. B. Jiang, “Potential sites for tidal power generation: A thorough search at coast of New Jersey, USA,” Renew. Sustain. Energy Rev., vol. 39, pp. 412–425, 2014.
  • 176. R. Espina-Valdés, E. Álvarez Álvarez, J. García-Maribona, A. J. G. Trashorras, and J. M. González-Caballín, “Tidal current energy potential assessment in the Avilés Port using a three-dimensional CFD method,” Clean Technol. Environ. Policy, 2019, doi: 10.1007/s10098-019-01711-2.
  • 177. P. Rosa-Santos et al., “Experimental Study of a Hybrid Wave Energy Converter Integrated in a Harbor Breakwater,” J. Mar. Sci. Eng., vol. 7, no. 2, p. 33, Feb. 2019, doi: 10.3390/ jmse7020033.
  • 178. F. Arena, G. Malara, G. Musolino, C. Rindone, A. Romolo, and A. Vitetta, “From green-energy to green-logistics: A pilot study in an Italian port area,” 2018, doi: 10.1016/j. trpro.2018.09.013.
  • 179. D. Vicinanza, E. Di Lauro, P. Contestabile, C. Gisonni, J. L. Lara, and I. J. Losada, “Review of Innovative Harbor Breakwaters for Wave-Energy Conversion,” J. Waterw. Port, Coastal, Ocean Eng., 2019, doi: 10.1061/(asce) ww.1943-5460.0000519.
  • 180. E. A. Alvarez, A. N. Manso, A. J. Gutiérrez-Trashorras, J. F. Francos, and M. R. Secades, “Obtaining renewable energy from tidal currents in the Aviles port: New services for citizens,” 2013, doi: 10.1109/SmartMILE.2013.6708175.
  • 181. S. Nižetić, M. Jurčević, D. Čoko, M. Arıcı, and A. T. Hoang, “Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches,” Energy, vol. 228, p. 120546, Aug. 2021, doi: 10.1016/j. energy.2021.120546.
  • 182. Z. Said et al., “Application of novel framework based on ensemble boosted regression trees and Gaussian process regression in modelling thermal performance of small-scale Organic Rankine Cycle (ORC) using hybrid nanofluid,” J. Clean. Prod., vol. 360, p. 132194, Aug. 2022, doi: 10.1016/j.jclepro.2022.132194.
  • 183. A. M. Kotrikla, T. Lilas, and N. Nikitakos, “Abatement of air pollution at an aegean island port utilizing shore side electricity and renewable energy,” Mar. Policy, 2017, doi: 10.1016/j.marpol.2016.01.026.
  • 184. J. S. L. Lam, M. J. Ko, J. R. Sim, and Y. Tee, “Feasibility of implementing energy management system in ports,” in 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2017, pp. 1621–1625.
  • 185. E.-H. Electric, “Innovative Green Technologies for a Sustainable Harbour. E-Harbours towards sustainable, clean and energetic innovative harbour cities in the North Sea Region,” 2012.
  • 186. Siemens, “Innovative power distribution for ports & harbors Concept for profitable and safe electric power distribution. Technical report,” 2017.
  • 187. A. Balbaa and N. H. El-Amary, “Green energy seaport suggestion for sustainable development in Damietta Port, Egypt,” WIT Trans. Ecol. Environ., 2017, doi: 10.2495/ ECO170071.
  • 188. A. Alzahrani, I. Petri, Y. Rezgui, and A. Ghoroghi, “Developing Smart Energy Communities around Fishery Ports: Toward Zero-Carbon Fishery Ports,” Energies, vol. 13, no. 11, p. 2779, Jun. 2020, doi: 10.3390/en13112779.
  • 189. S. Vakili, A. I. Ölçer, A. Schönborn, F. Ballini, and A. T. Hoang, “Energy‐related clean and green framework for shipbuilding community towards zero‐emissions: A strategic analysis from concept to case study,” Int. J. Energy Res., vol. 46, no. 14, pp. 20624–20649, Nov. 2022, doi: 10.1002/er.7649.
  • 190. PIANC, “Renewables and Energy Efficiency for Maritime Ports - MarCom WG Report n° 159-2019,” Brussel, 2019.
  • 191. M. Subramanian et al., “A technical review on composite phase change material based secondary assisted battery thermal management system for electric vehicles,” J. Clean. Prod., vol. 322, p. 129079, Nov. 2021, doi: 10.1016/j. jclepro.2021.129079.
  • 192. O. Aneziris, I. Koromila, and Z. Nivolianitou, “A systematic literature review on LNG safety at ports,” Saf. Sci., vol. 124, p. 104595, Apr. 2020, doi: 10.1016/j.ssci.2019.104595.
  • 193. L. Van Hoecke, L. Laffineur, R. Campe, P. Perreault, S. W. Verbruggen, and S. Lenaerts, “Challenges in the use of hydrogen for maritime applications,” Energy Environ. Sci., vol. 14, no. 2, pp. 815–843, 2021, doi: 10.1039/ D0EE01545H.
  • 194. A. Misra, G. Venkataramani, S. Gowrishankar, E. Ayyasam, and V. Ramalingam, “Renewable energy based smart microgrids—A pathway to green port development,” Strateg. Plan. Energy Environ., vol. 37, no. 2, pp. 17–32, 2017.
  • 195. W. McDowall and M. Eames, “Towards a sustainable hydrogen economy: A multi-criteria sustainability appraisal of competing hydrogen futures,” Int. J. Hydrogen Energy, vol. 32, no. 18, pp. 4611–4626, 2007.
  • 196. P. P. Edwards, V. L. Kuznetsov, W. I. F. David, and N. P. Brandon, “Hydrogen and fuel cells: towards a sustainable energy future,” Energy Policy, vol. 36, no. 12, pp. 4356–4362, 2008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-104c282b-ad33-4d0e-a0e3-1c9567c58b4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.