PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Impact of Single-Use Mask Waste on the Quality of Loamy Soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The COVID-19 outbreak has significantly raised the amount of single-use mask waste in Indonesia. This research intends to assess the effect of single-use mask waste on the quality of loamy soil. The investigation involved constructing a prototype using a 28–cm high column of 19 cm of loamy soil. The study utilized single-use masks in the soil, in which Chili plants were grown on the soil surface. Clean water was employed for the leaching process over 45 days. Soil samples from control, R1, R2, and R3 reactors were analyzed in the laboratory using X-ray fluorescence (XRF) testing and microplastic identification in groundwater. The research findings reveal a notable decline in macro and micronutrients, namely a 1.22% decrease in silicon minerals caused by microplastics interfering with plant metabolic processes. The increase in microplastics caused higher microorganism mortality, leading to a 10.18% decrease in organic carbon content and a 1.47% reduction in soil porosity. Microplastics were discovered in the loamy soil of an average size of 0.3±1.34 mm. Changes in nutrient concentrations and physical properties of the soil indicate that introducing microplastics into loamy soil through mask waste can alter soil characteristics. Additional research is required to investigate the disposal of single-use mask waste due to the ongoing high utilization of disposable masks as personal safety equipment.
Rocznik
Strony
379--388
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Environmental Health Department, Health Science Faculty of Dian Nuswantoro University, 50131, Indonesia
  • Environmental Health Department, Health Science Faculty of Dian Nuswantoro University, 50131, Indonesia
  • Center of Biomass and Renewable Energy, Diponegoro University, Semarang, 50275, Indonesia
autor
  • Environmental Health Department, Health Science Faculty of Dian Nuswantoro University, 50131, Indonesia
autor
  • Environmental Health Department, Health Science Faculty of Dian Nuswantoro University, 50131, Indonesia
  • Environmental Health Department, Health Science Faculty of Dian Nuswantoro University, 50131, Indonesia
  • Center of Biomass and Renewable Energy, Diponegoro University, Semarang, 50275, Indonesia
Bibliografia
  • 1. Alengebawy, A., Abdelkhalek, S.T., Qureshi, S.R., Wang M.Q. 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxins, 9(3). doi: 10.3390/toxics9030042.
  • 2. Aragaw, T.A. 2020. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Marine Pollution Bulletin, 159, 111517. doi: 10.1016/j.marpolbul.2020.111517.
  • 3. Asatyas, S. 2021. Education on the Dangers of Microplastics on the Environment through Social Media [in Indonesian]. Prosiding Seminar Nasional Pengabdian kepada Masyarakat (SINAPMAS) 2021, (September) Available at: http://conference.um.ac.id/index.php/sinapmas/article/view/3175/1719.
  • 4. Bunga, N. 2022. Literature Study of the Impact of Microplastics on the Environment Ni Made Nia Bunga Surya Dewi [in Indonesian]. Jurnal Sosial Sains dan Teknologi SOSINTEK, (November), 239–250. Available at: http://journal.unmasmataram.ac.id/index.php/SOSINTEK.
  • 5. Cheng, K., Xu, X., Cui, L., Li, Y., Zheng, J., Wu, W., Sun, J., Pan, G. 2021. The role of soils in regulation of freshwater and coastal water quality. Philosophical Transactions of the Royal Society B, 376. https://doi.org/10.1098/rstb.2020.0176.
  • 6. Dissanayake, J., Torres-Quiroz, C., Mahato, J., Park, J. 2021. Facemasks: A looming microplastic crisis. International Journal of Environmental Research and Public Health, 18(13). doi: 10.3390/ ijerph18137068.
  • 7. Gregory A.S., Ritz, K. McGrath, S.P., Quinton, J.N., Goulding, K.W.T., Jones, R.J.A., Harris, J.A., Bol, R., Wallace, P., Pilgrim, E.S., Whitmore A.P. 2015. A review of the impacts of degradation threats on soil properties in the UK. Soil Use and Management, 31(1), 1–15. doi: 10.1111/sum.12212.
  • 8. Guo, X., Cui, Q., Ma, S., Xiao, C., Yang, Z. 2022. Soil microplastics: We need to pay more attention. Water Emerging Contaminants & Nanoplastics, 1(2), 9. doi: 10.20517/wecn.2022.06.
  • 9. Guo, Z., Li P., Yang, X., Wang, Z., Lu B., Chen W., Wu Y., Li G., Zhao Z., Liu G., Ritsema C., Geissen V., Xue S. 2022. Soil texture is an important factor determining how microplastics affect soil hydraulic characteristics. Environment International, 165, 107293. doi: 10.1016/j.envint.2022.107293.
  • 10. Gurnita, Mulyadi, A. and Ibrahim, Y. 2022. Water analysis of heavy metal elements [in Indonesian]. Jurnal Biologi dan Pendidikan Biologi, 7(2), 86–95.
  • 11. Ingraffia, R., Amato, G., Bagarello, V., Carollo, F.G., Giambalvo, D., Iovino, M., Lehmann, A., Rillig M.C., Frenda, A.S. 2022. Polyester microplastic fibers affect soil physical properties and erosion as a function of soil type. SOIL, 8(1), 421–435. doi: 10.5194/soil-8-421-2022.
  • 12. Irmak, S. 2019. Soil - water potential and soil - Water content concepts and measurement methods. Nebraska Extension Publications, (December), 1–18.
  • 13. Jing, X., Su, L., Wang, Y., Yu, M., Xing, X. 2023. How do microplastics affect physical properties of silt loam soil under wetting-drying cycles?. Agronomy, 13(3): 844. Doi: 10.3390/agronomy13030844.
  • 14. Kim, S.W., Jeong, S.W. and An, Y.J. 2021. Microplastics disrupt accurate soil organic carbon measurement based on chemical oxidation method. Chemosphere, 276, 130178. doi: 10.1016/j.chemosphere.2021.130178.
  • 15. Knicker, H. and Velasco-Molina, M. 2022. Biodegradability of disposable surgical face masks littered into soil systems during the COVID-19 pandemic A first approach using microcosms. Soil Systems, 6(2): 39. Doi: 10.3390/soilsystems6020039.
  • 16. Khoironi, A., Hadiyanto, H., Hartini, E., Dianratri, I., Joelyna, F.A., Pratiwi, W.Z. 2023. Impact of disposable mask microplastics pollution on the aquatic environment and microalgae growth. Environmental Science and Pollution Research, 30(31), 77453–77468. doi: https://doi.org/10.1007/s11356-023-27651-5
  • 17. Kumar, S., Kumar, S., Mohapatra, T. 2021. Interaction between macro‐ and micro-nutrients in plants. Frontiers in Plant Science, 12: 665583. doi: 10.3389/fpls.2021.665583.
  • 18. Kusumaningrum, W.B., Rochmadi, R. and Subyakto, S. 2017. Preparation of acetylated cellulose from betung bamboo pulp (Dendrocalamus asper) and its effect on the mechanical properties of polypropylene biocomposites [in Indonesian]. Reaktor, 17(1), 25. doi: 10.14710/reaktor.17.1.25-35.
  • 19. Kwak, J. Il, An, Y.J. 2021. Post COVID-19 pandemic: Biofragmentation and soil ecotoxicological effects of microplastics derived from face masks. Journal of Hazardous Materials, 416, 126169. doi: https://doi.org/10.1016/j.jhazmat.2021.126169.
  • 20. Lehmann, A., Leifheit, E.F., Gerdawischke, M., Rillig, M.C. 2021. Microplastics have shape- and polymerdependent effects on soil aggregation and organic matter loss – an experimental and meta-analytical approach. Microplastics and Nanoplastics, 1(1), 1–14. doi: 10.1186/s43591-021-00007-x.
  • 21. Li, B., Huang, Y., Guo, D., Liu, Y., Liu, Z., Han J.C., Zhao, J., Zhu, X., Huang, Y., Wang, Z., Xing B. 2022. Environmental risks of disposable face masks during the pandemic of COVID-19: Challenges and management. The Science of the Total Environment, 825, 153880. doi: 10.1016/j.scitotenv.2022.153880.
  • 22. Li, Z., Yang, Y., Chen, X., He, Y., Bolan, N., Rinklebe, J., Lam, S.S., Peng, W., Sonne, C. 2023. A discussion of microplastics in soil and risks for ecosystems and food chains. Chemosphere, 313, p. 137637. doi: 10.1016/j.chemosphere.2022.137637.
  • 23. Lozano, Y.M., Lehnert, T., Lehmann, A., Rillig, M.C. 2021. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Frontiers in Plant Science, 12 (February), 1–14. doi: 10.3389/fpls.2021.616645.
  • 24. Lozano, Y.M. and Rillig, M.C. 2020. Effects of microplastic fibers and drought on plant communities. Environmental Science and Technology, 54(10), 6166–6173. doi: 10.1021/acs.est.0c01051.
  • 25. Mammo, F., Amoah, I., Gani, K., Pillay, L., Ratha, S., Bux, F., Kumari, S. 2020. Microplastics in the environment: Interactions with microbes and chemical contaminants. The Science of the total environment, 743, 140518. https://doi.org/10.1016/j.scitotenv.2020.140518.
  • 26. Mentari, A.E., Khoironi, A., Hadiyanto. 2022. The impact of disposable mask waste pollution in peat soil. IOP Conference Series: Earth and Environmental Science, 1098(1). doi: 10.1088/1755-1315/1098/1/012016.
  • 27. Möller, J.N., Löder, M.G.J. and Laforsch, C. 2020. Finding microplastics in soils: A review of analytical methods. Environmental Science & Technology, 54(4), 2078–2090. doi: 10.1021/acs.est.9b04618.
  • 28. Oginni, O. 2022. COVID-19 disposable face masks: A precursor for synthesis of valuable bioproducts. Environmental Science and Pollution Research, 29(57), 85574–85576. doi: 10.1007/s11356-021-15229-y.
  • 29. Qodriyatun, S.N. 2014. Improving community welfare through waste management based on Law no. 18 of 2008 [in Indonesian]. Aspirasi: Jurnal Masalahmasalah Sosial, (18), 21–34. Available at: http://jurnal.dpr.go.id/index.php/aspirasi/article/view/450.
  • 30. Rai, M., Pant, G., Pant, K., Aloo, B. N., Kumar, G., Singh, H.B., Tripathi, V. 2023. Microplastic pollution in terrestrial ecosystems and its interaction with other soil pollutants: A potential threat to soil ecosystem sustainability. Resources, 12(6), 67.
  • 31. Ramadhani, S.Q. 2023. Potential of Medical Mask Waste in Making Interior and Exterior Materials [in Indonesian]. Teknosains: Media Informasi Sains dan Teknologi, 17(1), 88–89.
  • 32. Rinaldi, R.N. and Anjari, S.R. 2021. Impact of Disposable Medical Waste Generation During the Covid-19 Pandemic: A literature review [in Indonesian]. Seminar Nasional Kesehatan Masyarakat UPNVJ, 113–125.
  • 33. Sajjad, M., Huang, Q., Khan, S., Khan, M.A., Liu, Y., Wang, J., Lian, F., Wang, Q., Guo, G. 2022. Microplastics in the soil environment: A critical review. Environmental Technology & Innovation, 27, 102408. doi: 10.1016/j.eti.2022.102408.
  • 34. Selvaranjan, K. et al. 2021. Environmental challenges induced by extensive use of face masks during COVID-19: A review and potential solutions. Environmental Challenges, 3, 100039. doi: 10.1016/j.envc.2021.100039.
  • 35. Selvaranjan, K., Navaratnam, S., Rajeev, P., Ravintherakumaran, N. 2020. Characteristics of thermoplastic elastomers from natural rubber and polypropylene with the addition of carbon black filler [in Indonesian]. Jurnal Teknik Patra Akademika, 10(02), 41–44. doi: 10.52506/jtpa.v10i02.93.
  • 36. Sharifi, M. 2013. Role of micronutrients in crop production. 11(1000268), 1–4. doi: 10.35248/2168-9881.22.11.268.
  • 37. Shim, W., Hong, S. and Eo, S. 2016. Identification methods in microplastic analysis: A review. Anal. Methods, 9. doi: 10.1039/C6AY02558G.
  • 38. De Souza Machado, A.A., Lau, C.W., Till, J., Kloas, W., Lehmann, A., Becker, R., Rillig, M.C. 2018. Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology, 52(17), 9656–9665. doi:10.1021/acs.est.8b02212.
  • 39. De Souza Machado, A.A, Lau, C.W., Kloas, W. J Bergmann, Bachelier, J.B., Faltin, E., Becker R., Görlich A.S. 2019. Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 53(10), 6044–6052. doi: 10.1021/acs.est.9b01339.
  • 40. Thomas, D., Schütze, B., Heinze, W.M., Steinmetz, Z. 2020. Sample preparation techniques for the analysis of microplastics in soil-a review. Sustainability (Switzerland), 12(21), 1–28. doi: 10.3390/su12219074.
  • 41. Trevisan, R., Brander, S.M. and Coffin, S. 2022. Editorial: Microplastics in water and potential impacts on human health. Frontiers in Water, 4. doi: 10.3389/frwa.2022.1101313.
  • 42. USDA NRCS. 2019. Soil health - guides for educators: Soil bulk density/moisture/aeration’, Soil Quality Kit-Guides for Educators, (May), 1–11. Available at: https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/health/assessment/?cid=nrcs142p2_053870.
  • 43. Wang, Z., Li, W., Li, W., Yang, W., Jing, S. 2023. Effects of microplastics on the water characteristic curve of soils with different textures. Chemosphere, 317, 137762. doi: 10.1016/j.chemosphere.2023.137762.
  • 44. Xu, B. 2020. Microplastics in the soil environment: Occurrence, risks, interactions and fate – A review. Critical Reviews in Environmental Science and Technology, v. 50(21), 2175–2222. doi: 10.1080/10643389.2019.1694822.
  • 45. Zewide, I. and Reta, Y. 2021. Review on the role of soil macronutrient (NPK) on the improvement and yield and quality of agronomic crops. Journal of Agriculture and Food Research, 9, 7–11. doi: 10.26765/ DRJAFS23284767.
  • 46. Zewide, I., Sherefu, A. 2021. Review paper on effect of micronutrients for crop production. Nutrition and Food Processing, 4(7); doi: 10.31579/2637-8914/063.
  • 47. Zhang, S., Bao, A., Lin, X., Jia, G., Zhang Q. 2023. Microplastic accumulation in agricultural soils with different mulching histories in Xinjiang, China. Sustainability, 15(6), 5438. doi: 10.3390/su15065438.
  • 48. Zhao, C., Ting, Z., You, Z., Kim, H., Shah, K.J. 2022. Uncontrolled disposal of used masks resulting in release of microplastics and co-pollutants into environment. water, 14(15), 2403. doi: 10.3390/w14152403.
  • 49. Zhao, T. 2021. Microplastics increase soil pH and decrease microbial activities as a function of microplastic shape, polymer type, and exposure time. Frontiers in Environmental Science, 9(1); doi: 10.3389/fenvs.2021.675803.
  • 50. Zhao, T., Lozano, Y.M. and Rillig, M.C. 2021. Microplastics increase soil pH and decrease microbial activities as a function of microplastic shape, polymer type, and exposure time. Frontiers in Environmental Science, 9(June), 1–14. doi: 10.3389/fenvs.2021.675803.
  • 51. Zhou, Y., Wang, J., Zou, M., Jia, Z., Zhou, S., Li, Y. 2020. Microplastics in soils: A review of methods, occurrence, fate, transport, ecological and environmental risks. The Science of the Total Environment, 748, 141368. doi: 10.1016/j.scitotenv.2020.141368.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-104b4ab3-4f42-4417-bdc7-c393c679b7f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.