Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main purpose of this study was to develop a mathematical model, in a steady state and dynamic mode, of a Catalytic Partial Oxidation (CPOx ) reformer – Solid Oxide Fuel Cell (SOFC) stack integrated system in order to assess the system performance. Mass balance equations were written for each component in the system together with energy equation and implemented into the MATLAB Simulink simulation tool. Temperature, gas concentrations, pressure and current density were computed in the steady-state mode and validated against experimental data. The calculated I–V curve matched well the experimental one. In the dynamic modelling, several different conditions including step changes in fuel flow rates, stack voltage as well as temperature values were applied to estimate the system response against the load variations. Results provide valuable insight into the operating conditions that have to be achieved to ensure efficient CPOx performance for fuel processing for the SOFC stack applications.
Czasopismo
Rocznik
Tom
Strony
41--46
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
- 1. Bae, J., Lim, S., Jee, H., Kim, J.H., Yoo, Y.S. & Lee, T. (2007). Small stack performance of intermediate temperature operating solid oxide fuel cells using stainless steel interconnects and anode supported single cell. J. Power Sour. 172, 100–107. DOI: 10.1016/j.jpowsour.2007.01.093.
- 2. Tavazzi, I., Beretta, A., Groppi, G., Forzatti, P., Bao, X. & Xu, Y. (2004). An investigation of methane partial oxidation kinetics over Rh supported catalysts, Studies Surface Science Catalysis – Natural Gas Conversion VII, 147, Elsevier, Amsterdam, 163–168. DOI: 10.1016/S0167-2991(04)80045-4.
- 3. Seyed-Reihani, S.A. & Jackson, G.S. (2010). Catalytic partial oxidation of n-butane over Rh catalysts for solid oxide fuel cell applications. Catal. Today, 155, 75–83. DOI: 10.1016/j.cattod.2009.03.032.
- 4. Lawrence, J. & Boltze, M. (2006). Auxiliary power unit based on a solid oxide fuel cell and fueled with diesel J. Power Sour. 154, 479–488. DOI: 10.1016/j.jpowsour.2005.10.036.
- 5. Frenzel, I., Loukou, A., Trimis, D., Schroeter, F., Mir, L., Marin, R., Egilegor, B., Manzanedo, J., Raju, G., de Bruijne, M., Wesseling, R., Fernades, S., Pereira, J.M.Ch., Vourliotakis, G., Founti, M. & Posdziech, O. (2012). Development of an SOFC based micro-CHP system in the framework of the European project FC-DISTRICT. Energy Proc. 28, 170–181. DOI: 10.1016/j.egypro.2012.08.051.
- 6. Kupilik, M. & Vincent, T.L. (2013). Control of a solid oxide fuel cell system with sensitivity to carbon formation. J. Power Sour. 222, 267–276. DOI: 10.1016/j.jpowsour.2012.08.083.
- 7. Pukrushpan, J., Stefanopoulou, A., Varigonda, S., Eborn, J. & Haugstetter, C. (2006). Control oriented model of fuel processor for hydrogen generation in fuel cell applications, Control Engine. Pract. 14(3), 277–293. DOI: 10.1016/j.conengprac.2005.04.014.
- 8. Zhu, J., Zhang, D. & King, K.D. (2001). Reforming of CH4 by partial oxidation: thermodynamic and kinetic analyses. Fuel 80(7), 899–905. DOI: S0016-2361(00)00165-4.
- 9. Larentis, A.L., de Resende, N.S., Salim, V.M.M. & Pinto, J.C. (2001). Modeling and optimization of the combined carbon dioxide reforming and partial oxidation of natural gas. Appl. Catal. 215(1–2), 211–224. DOI: S0926-860X(01)00533-6.
- 10, Xi, H., Sun, J. & Tsourapas, V. (2007). A control oriented low order dynamic model for planar SOFC using minimum Gibbs free energy method. J. Power Sour. 165(1), 253–266. DOI: 10.1016/j.jpowsour.2006.12.009.
- 11. Singhal, S. & Kendall, K. (2004). High temperature Solid Oxide Fuel Cells: Fundamentals, Des. Applicat. Elsev. Sci. ISBN: 978-1-85617-387-2.
- 12. Larminie, J. & Dicks, A. (2003). Fuel Cell Systems Explained, 2nd Edition, Wiley. ISBN: 0-470-84857-X.
- 13. Aguiar, P., Adjiman, C.S. & Brandon, N.P. (2006). Anode supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model based steady-state performance. J. Power Sour. 138(1–2), 120–136. DOI: 10.1016/j.jpowsour.2004.06.040.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-104aa49c-5c15-4e03-9131-d45ab6908663
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.