
ADVANCES IN COMPUTER SCIENCE RESEARCH

ESTIMATION OF PARAMETERS OF GAUSSIAN
MIXTURE MODELS BY A HYBRID METHOD

COMBINING A SELF-ADAPTIVE DIFFERENTIAL
EVOLUTION WITH THE EM ALGORITHM

Wojciech Kwedlo

Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland

Abstract: In the paper the problem of learning of Gaussian mixture models (GMMs) is
considered. A new approach based on hybridization of a self-adaptive version of differential
evolution (DE) with the classical EM algorithm is described. In this approach, called DE-
EM, the EM algorithm is run until convergence to fine-tune each solution obtained by the
mutation and crossover operators of DE. To avoid the problem with parameter representation
and infeasible solutions we use a method in which the covariance matrices are encoded using
their Cholesky factorizations. In a simulation study GMMs were used to cluster synthetic
datasets differing by a degree of separation between clusters. The results of experiments
indicate that DE-EM outperforms the standard multiple restart expectation-maximization
algorithm (MREM). For datasets with high number of features it also outperforms the state-
of-the-art random swap EM (RSEM).

Keywords: Gaussian mixture models, differential evolution, expectation maximization,
model-based clustering

1. Introduction

Gaussian mixture models (GMMs) [18] are one of the most versatile probability
density models, which are used commonly in machine learning and pattern recog-
nition. They are capable of approximating any multimodal distribution. Applications
of GMMs include clustering [7] discriminant analysis [9], speaker recognition [22]
and texture segmentation [19].

The standard method for maximum likelihood estimation (MLE) of parameters
of GMMs is the expectation-maximization (EM) algorithm [21]. It starts from an
initial set of mixture parameters and generates a sequence of mixture parameters with

Advances in Computer Science Research, vol. 11, pp. 109-123, 2014.

109

Wojciech Kwedlo

increasing log likelihood. However, the application of the EM algorithm to GMM
parameter learning has several issues. The most important of these is ease of getting
trapped in a local maxima of the log likelihood. Consequently the quality of the final
solution is strongly dependent on the initial guess of the mixture parameters.

The most common approach proposed to overcome the above problem is to run
the EM algorithm many times, starting each run from different random initial con-
ditions, and return the solution with the highest log likelihood. We call this method
multiple restart EM (MREM). However this approach lacks effective utilization of
available CPU time, as multiple independent EM procedures are likely to exploit
similar local maxima.

In [3], an extension of MREM called emEM was proposed. The idea of emEM
involves performing several short EM runs using different random starting points and
a lax convergence criterion. The mixture parameters obtained by the best (in the sense
of the highest log p(X |Θ)) short run are used as a starting point for a long EM run.
This strategy can be improved by repeating it many times until the available CPU
time is exhausted. A variant of emEM called rndEM [16] reduces the short EM phase
to the evaluation of log p(X |Θ) of the random starting position.

Researchers investigating the problem of local maxima of the log likelihood
have increasingly started to apply population based global optimization algorithms
such as genetic algorithms [1,17,20], particle swarm optimization (PSO) [2] or dif-
ferential evolution [12]. However, a random nature of of search operators employed
by these algorithms makes it difficult to represent covariance matrices, because a
random modification of individual elements of covariance matrix usually results in
a matrix that is not valid (i.e. symmetric and positive definite). Consequently many
applications of global optimization algorithms to problem of GMM learning use di-
agonal (or even spherical) covariance structure.

To avoid the above restriction on covariance structure, the encoding of covari-
ance matrices in candidate solutions must allow for independent modification of indi-
vidual parameters [2]. Two such encodings have been proposed so far. In [2] covari-
ance matrix of d-dimensional Gaussian distribution was encoded using d eigenvalues
and d(d − 1)/2 Givens rotation angles. In our previous work [12], the covariance
matrix was represented by its Cholesky factorization.

The main contribution of this paper, in comparison with our previous works [12],
is the inclusion of the EM algorithm into the process of differential evolution (DE).
We show, that DE augmented in such way is able to compete with state-of-the-art
GMM parameter estimation methods such as random swap EM algorithm (RSEM)
[24].

110

Estimation of parameters of Gaussian mixture models by a hybrid method ...

The rest of the paper is organized as follows. Section 2 presents the problem
of GMMs parameter estimation. Section 3 describes the EM algorithm, which is the
standard method for GMMs learning. Section 4 presents differential evolution al-
gorithm. Section 5 describes a self-adaptation scheme for two key DE parameters.
Section 6 presents the application of a hybrid self-adaptive DE to the problem of
GMM parameter estimation. Section 7 presents the results of simulation study in
which GMMs were used for data clustering. The last section concludes the paper.

2. Background on GMMs

A finite mixture model p(x,Θ) is defined by a weighted sum of K components:

p(x|Θ) =
K

∑
m=1

αm pm(x|θm), (1)

where αm is m-th mixing proportion and pm is the probability density function of the
m-th component. In (1) θm is the set of parameters defining the m-th component and
Θ = {θ1,θ2, . . . ,θK ,α1,α2, . . . ,αK} is the complete set of the parameters needed to
define the mixture. The mixing proportions αm ∈ (0,1) are constrained to sum up to
1. In this work we assume, that the number of components K is known a priori.

In GMMs m-th component follows a multivariate Gaussian distributions with
mean vector µm and covariance matrix Σm. Its probability density function is given
by:

pm(x|θm) =
1

(2π)d/2|Σm|1/2
exp(−1

2
(x−µm)

T
Σ
−1
m (x−µm)), (2)

where | · | denotes a determinant of a matrix, T denotes transposition of a matrix,
and d is the dimension of the feature space. Thus, for a GMM Θ is defined by: Θ =
{µ1,Σ1, . . . ,µK ,ΣK ,α1, . . . ,αK}.

A standard method for learning the parameters of GMMs is the maximum like-
lihood estimation (MLE). Given a training set of independent and identically dis-
tributed feature vectors X = {x1,x2, . . . ,xN}, where xi = [xi

1,x
i
2, . . . ,x

i
d] ∈ Rd , the log

likelihood corresponding to the K-component GMM is given by:

log p(X |Θ) = log
N

∏
i=1

p(xi|Θ) =
N

∑
i=1

log
K

∑
m=1

αm pm(xi|θm). (3)

The maximum likelihood estimate of the parameters is given by:

ΘML = argmax
Θ

{log p(X |Θ)}. (4)

111

Wojciech Kwedlo

It is a well known fact, that a solution of this maximization problem cannot be ob-
tained in a closed form [4]. For that reason a numerical optimization algorithm must
be employed to find it.

Model-based clustering [7] is an important application of GMMs. The aim of
clustering is to group similar feature vectors together. In this application of GMMs
each feature vector is assumed to originate from one K mixture components. We also
assume that mixture components are well-separated. The goal of the model-based
clustering is to identify, for each feature vector, the mixture component from which it
was generated. If we are able to estimate mixture parameters Θ, we can achieve this
by allocating e feature vector xi to a cluster (mixture component) the highest posterior
probability. Using the Bayes theorem this probability for mixture component m can
be expressed as:

hm(xi) =
αm pm(xi|θm)

p(xi|Θ)
. (5)

Maximization of (5) is equivalent to finding the mixture index m with the highest
value αm pm(x|θm).

3. EM algorithm for GMM learning

The standard method for maximizing (3) is the EM algorithm. It is an iterative al-
gorithm, which, starting from initial guess of a parameters Θ(0), generates a se-
quence of estimations Θ(1),Θ(2), . . . ,Θ(j), . . ., with increasing log likelihood (i.e.,
log p(X |Θ(j)) > log p(X |Θ(j−1)). Each iteration j of the algorithm consists of two
steps called expectation step (E-step) and maximization step (M-step) followed by a
convergence check. For the GMMs these steps are defined as follows [21]:

1. E-step: Given the set of mixture parameters Θ(j−1) from the previous iteration,
for each m = 1, . . . ,K and i = 1, . . . ,N, the posterior probability that a feature
vector xi was generated from mth component is computed as:

h(j)
m (xi) =

α
(j)
m pm(xi|θ(j−1)

m)

∑
K
k=1 α

(j)
k pk(xi|θ(j−1)

k)
, (6)

where θ
(j−1)
m and θ

(j−1)
k denote parameters of components m and k, in the iteration

j−1, respectively.
2. M-step: Given the posterior probabilities h(j)

m (xi) obtained in the E-step the set of
parameters Θ(j) is calculated as:

α
(j)
m =

1
N

N

∑
i=1

h(j)
m (xi) (7)

112

Estimation of parameters of Gaussian mixture models by a hybrid method ...

µ(j)
m =

∑
N
i=1 h(j)

m (xi)∗xi

∑
N
i=1 h(j)

m (xi)
(8)

Σ
(j)
m =

∑
N
i=1 h(j)

m (xi)(xi−µ(j)
m)(xi−µ(j)

m)T

∑
N
i=1 h(j)

m (xi)
(9)

3. Convergence check: The log likelihood log p(X |Θ(j)) is computed according (3).
The algorithm is terminated if the following convergence criterion is met.

log p(X |Θ(j))− log p(X |Θ(j−1))

log p(X |Θ(j))
< ε, (10)

where ε� 1 is a user defined termination threshold. If the convergence criterion
is not met algorithm proceeds to Step 1.

The above algorithm is easy to implement. However it has one important draw-
back. It is highly sensitive to initialization and easily gets trapped in a local maxi-
mum of the log likelihood function. For that reason the quality of the final solution is
strongly dependent on the initial guess of the mixture parameters Θ(0). The problem
can be to some degree alleviated by performing multiple runs of the algorithm, each
of them starting from different random initial conditions, and returning the result with
the highest log p(X |Θ). We call this approach multiple restart EM (MREM).

4. Differential evolution

Differential evolution, proposed in [23], is an evolutionary algorithm, which in each
generation maintains a population of S solutions to optimization problem. In this
section the most common variant with rand/1/ mutation and binomial crossover is
described.

Let ui,G denote the i-th member (i = 1, . . . ,S) of the population in the G-th iter-
ation. It is assumed that ui,G Is a D-dimensional real-valued vectors (i.e., ui,G ∈ℜD).

At the start of the algorithm all population members are initialized randomly.
Each generation G consists of three steps. Two of them are mutation and crossover,
which for each population element ui,G create a trial solution yi,G. The mutation and
crossover are followed by a selection, in which fitness of population member ui,G is
compared to fitness of the trial solution yi,G. The solution with the better (i.e., higher
in our application) fitness survives into the next generation:

yi,G+1 =

{
yi,G if f (yi,G)> f (yi,G)

ui,G otherwise
, (11)

113

Wojciech Kwedlo

where f : ℜD→ℜ is the fitness function.
The mutation operator of DE generates a creates a mutant vector v′i,G according

to the equation:
v′i,G = ua,G +F ∗ (ub,G−uc,G), (12)

where F ∈ [0,2] is a user-supplied parameter called amplification factor and a,b,c ∈
1, . . . ,S are randomly selected in such way that a 6= b 6= c 6= i.

The final trial vector yi,G is obtained by the crossover operator, which mixes
the mutant vector vi,G with the original vector ui,G. Let us assume that ui,G =
(u1i,G,u2i,G, . . . ,uDi,G). Each element y ji,G (where j = 1, . . . ,D) of the trial vector
yi,G is generated as:

y ji,G =

{
v ji,G if rnd(j)<CR or j = e
u ji,G otherwise

. (13)

where CR ∈ [0,1] is another user-supplied parameter called crossover factor, rnd(j)
denotes a random number from the uniform distribution on [0,1] which is generated
independently for each j. e ∈ 1, . . . ,S is a randomly chosen index which ensures that
at least one element of the trial vector yi,G comes from the mutant vector y′i,G.

5. Self adaptation of DE control parameters

Experimental studies have shown, that the choice of control parameters F and CR has
a significant impact on the performance of DE. In the first experiments with DE [23]
the parameters were fixed during the run of the algorithm. Later, some methods for
parameter control [6], which change the parameters during the run, were developed.
Among these, the approach called self-adaptive parameter control attracted many
researchers. In this approach the parameters are encoded into individuals and undergo
evolution. The better values of the parameters result in better individuals which are
more likely to reproduce and produce offspring and, thus, disseminate these better
parameters.

In our DE-EM method, a self-adaptation scheme proposed by Brest et al. [5] was
used. It works as follows. Each population element and each trial vector is augmented
with its own amplification factor and crossover factor. Let us denote by Fu

i,G and
Fy

i,G the amplification factors associated with the vectors ui,G and yi,G, respectively.
Similarly, let us denote by CRu

i,G and CRy
i,G the crossover factors associated with the

vectors ui,G and yi,G, respectively.

114

Estimation of parameters of Gaussian mixture models by a hybrid method ...

Before the mutation Fy
i,G is generated as:

Fy
i,G =

{
L+ rnd2 ∗U if rnd1 < τ1

Fu
i,G otherwise

. (14)

rnd1 and rnd2 are uniform random values from [0,1], τ1 ∈ [0,1] is the probability
of choosing new random value of Fy

i,G, L and U are the parameters determining the
range for Fy

i,G.
Similarly to Fy

i,G, CRy
i,G is generated before the mutation as:

CRy
i,G =

{
rnd3 if rnd4 < τ2

CRu
i,G otherwise

, (15)

where τ2 ∈ [0,1] is the probability of choosing new random value of CRy
i,G.

It may seem that self-adaptation of F and CR introduces another four parameters
(L, U , τ1, τ2) which require a costly fine-tuning using the trial-and-error approach.
However, Brest et al. [5] used fixed values of these parameters obtaining very good
results for a very diverse range of benchmark numerical optimization problems. Fol-
lowing their advice in our experiments we set τ1 = τ2 = 0.1. L and U were set to 0.05
and 0.35 respectively, which ensured that Fy

i,G ∈ [0.05,0.4].

6. Application of hybrid self-adaptive DE to the problem of GMM
learning

6.1 Representation of GMM parameters

Since DE represents the problem solutions as real-valued vectors the encoding of
mixing proportions and mean vectors is very straightforward: they simply are stored
in solution vectors using the floating point representation. Unfortunately, this method
cannot be use in case of covariance matrices. A covariance matrix of Σ of d-
dimensional Gaussian distribution is symmetric, and thus has d(d + 1)/2 free pa-
rameters. However, if a distribution is non-degenerate, this matrix must be positive
definite i.e., for each non-zero x ∈ℜd xT Σx > 0 [11]. For that reason it is impossible
to store these parameters directly, because matrices obtained by a random operators
of crossover and mutation would violate the positive-definiteness constraint [2].

To overcome this obstacle DE-EM uses the representation of covariance ma-
trices, first proposed in [12], based on their Cholesky factorization. Each positive-
definite matrix Σ can be decomposed as a product of a lower triangular matrix L with

115

Wojciech Kwedlo

positive diagonal elements and its transpose [8]:

Σ = LLT . (16)

The Cholesky factorization of a positive-definite matrix is unique [8]. The matrix
L is called the Cholesky factor of Σ or the square root of Σ.

In the DE-EM method the covariance matrices of a GMM are represented in
solution vectors of DE by their Cholesky factors. The constraints on Cholesky factors
(the diagonal elements must be positive) are easily handled by DE, because each
constraint on solution handled independently from the other constraints.

6.2 Fitness function

The fitness function used by DE-EM is log p(X |Θ). The selection method is config-
ured to maximize the fitness.

6.3 Hybridization with the EM algorithm

Before the selection step of DE, each candidate solution is fine-tuned by the EM
algorithm. First, the solution is used to initialize the EM. Next, the EM algorithm is
run until the convergence criterion (10) is met. Then, the solution obtained by the EM
algorithm is used in the selection step.

Similar fine-tuning by the EM algorithm is performed on random initial solu-
tions in generation 0.

7. Experimental results

In this section the results of the computational experiments on synthetic datasets,
in which the GMMs were used for model-based clustering, are reported. We com-
pared our DE-EM method to two other approaches: the standard multiple restart EM
(MREM) and recently proposed [24] random swap EM (RSEM), which is state-of-
the-art method for GMM parameters estimation, capable of escaping from local max-
ima of log likelihood.

The algorithms were implemented in C++ language and compiled by the In-
tel C++ compiler version 14.0.1 using optimizing options (-O3 -ipo -march=core2
-fno-alias). The compiled programs were run on a Dell Poweredge 1950 server with
two quad-core Intel Xeon 5355 (2.66 GHz) processors and 16 GB of RAM, run-
ning Ubuntu Linux 12.04. The implementation of EM was parallelized [14] using

116

Estimation of parameters of Gaussian mixture models by a hybrid method ...

OpenMP standard for shared memory computers, taking advantage of all eight cores
of the system.

In the experiments we used a generator proposed by [15], which generates ran-
domly Gaussian clusters according to the user-defined overlap characteristic. The
overlap ωi j between two clusters i and j is defined as the sum of two misclassifi-
cation probabilities ω j|i and ωi| j, where: ω j|i = Pr[αi p(x|µi,Σi)< α j p(x|µ j,Σ j)|x∼
N (µi,Σi)], and similarly ωi| j = Pr[α j p(x|µ j,Σ j)< αi p(x|µi,Σi)|x∼N (µ j,Σ j)].

The overlap characteristic of the generator [15] was controlled by one parameter
ω expressing the average pairwise overlap between clusters. In our experiments the
number of components K was fixed at 20. Figure 1 shows example two-dimensional
training sets simulated from mixtures obtained from the generator for different values
of ω. It can be seen that by using different values of ω we can control the separation
of clusters.

In our experiments we generated mixtures with dimension d ∈ {5,10,25}. For
each dimension we used ω ∈ {0.0001,0.0002,0.0005,0.001,0.0025,0.005,
0.01,0.0250,0.05,0.1}. We used the adjusted Rand index (ARI) [10] to measure the
degree of agreement between partitions of data discovered by the clustering algo-
rithms and the original partitions (we knew them because we used synthetic datasets
drawn by a random generator, which allowed us to track the source of each feature
vector). The ARI is bounded between -1 and 1. The expected value of ARI in case of
randomly generated partitions is 0. A higher value of ARI indicates a higher similar-
ity between partitions; a maximum value of 1 means, that two partitions are identical.
A similar experimental setting was used for comparison of different EM initialization
methods in [13].

The feature vectors were clustered according to the MAP rule, as described in
Section 2. Since in this experiment the original (ground truth) mixture parameters
were available, we also performed clustering using them.

The experimental protocol was as follows. For every combination of d and ω

50 different random mixtures were generated. For each mixture a single dataset was
realized. For d = 5 and d = 10 the number of feature vectors in dataset was set
to 6000. For d = 25 we had to increase this number to 30000 to avoid issues with
the singularity of covariance matrices. To assure a fair comparison, each of three
algorithms was allocated equal CPU time.

Figure 2a shows the obtained values of ARI, (averaged over 50 different mix-
tures) when clustering was performed on the basis of the ground truth parameters. As
expected, whereas for clusters with very small overlap ARI close to 1 (indicating very
good agreement between original partitions and clustering results) could be obtained,
an increase of overlap between clusters led to lower values of ARI.

117

Wojciech Kwedlo

−10 −8 −6 −4 −2 0 2 4 6 8
−10

−5

0

5

10

15

(a)
−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

(b)

−10 −5 0 5 10 15
−10

−5

0

5

10

15

(c)
−20 −15 −10 −5 0 5 10 15 20

−15

−10

−5

0

5

10

15

20

(d)

Fig. 1. Two-dimensional training sets simulated from 20–component mixtures with (a) ω = 0.0001, (b)
ω = 0.001, (c) ω = 0.01, (d) ω = 0.1. The ellipses are centered around component means and represent
95% confidence regions.

The average ARI values obtained for ground truth mixture parameters were used
as the baseline for comparison of three GMM parameter estimation methods. The
results concerning these methods are shown on Figures 2b, 2c, 2d. The result of each
method is shown as a % error relative ground truth mixture parameters. The % error
of the method A is computed as (ARIT −ARIA)/ARIT ∗ 100, where ARIT is the
average (over 50 different mixtures) ARI obtained using the ground truth mixture
parameters and ARIA is average ARI obtained using mixture parameters estimated
by the method A. A lower value of % error indicates a better performance, values

118

Estimation of parameters of Gaussian mixture models by a hybrid method ...

close to 0 indicate that clustering using a given GMM parameter estimation method
achieves similar results as clustering using the ground truth parameters. The results

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.0001 0.0002 0.0005 0.001 0.0025 0.005 0.01 0.025 0.05 0.1

A
R

I

ω

d=5

d=10

d=25

(a)

 0

 5

 10

 15

 20

 25

 0.0001 0.0002 0.0005 0.001 0.0025 0.005 0.01 0.025 0.05 0.1

%
 e

rr
o

r
in

 A
R

I
re

la
ti
v
e

 t
ru

e
 p

a
ra

m
e

te
rs

ω

MREM
RSEM

DE-EM

(b)

 0

 5

 10

 15

 20

 25

 30

 0.0001 0.0002 0.0005 0.001 0.0025 0.005 0.01 0.025 0.05 0.1

%
 e

rr
o

r
in

 A
R

I
re

la
ti
v
e

 t
ru

e
 p

a
ra

m
e

te
rs

ω

MREM
RSEM

DE-EM

(c)

 0

 2

 4

 6

 8

 10

 12

 14

 0.0001 0.0002 0.0005 0.001 0.0025 0.005 0.01 0.025 0.05 0.1

%
 e

rr
o

r
in

 A
R

I
re

la
ti
v
e

 t
ru

e
 p

a
ra

m
e

te
rs

ω

MREM
RSEM

DE-EM

(d)

Fig. 2. (a) The average ARI values obtained for clustering using true mixture parameters. % Error in
ARI relative true mixture parameters for (b) d = 5, (c) d = 10, (d) d = 25.

from Figures 2b – 2d are summarized by Table 1, which shows the results averaged

119

Wojciech Kwedlo

over 10 different values of ω separately for each dimension d. The last row of the
table shows the total average result for each of compared methods.

Table 1. The average error in ARI relative known mixture parameters

d MREM RSEM DE-EM
5 4.70 2.89 2.81
10 6.35 4.50 4.39
25 4.06 2.93 1.63
Total 5.04 3.44 2.94

The results achieved by the three algorithms indicate that:

– The difference between the results obtained by clustering using each of three
estimation methods and clustering using the ground truth parameters widens as
the average overlap between clusters is increased.

– MREM is the worst estimation method irrespectively from the dimension d of
feature space.

– For d = 5 and d = 10 the results of the DE-EM method are on par with the RSEM
approach. However, our method clearly outperforms RSEM for d = 25.

8. Conclusions

In this paper a new method for GMMs learning which combines the self-adaptive dif-
ferential evolution with the EM algorithm was proposed. To avoid the problem with
infeasibility of solutions we used an representation, in which covariance matrices
were encoded using their Cholesky factorization.

The results of our study allow us to recommend DE-EM method over the MREM
and RSEM algorithms in application of GMMs to clustering problems. Although
there was little difference between DEEM and RSEM in experiments where d = 5
and d = 10 our method was clear winner for more difficult problems where d = 25.

In future works we are going to compare the performance of the DE-EM method
to other well established hybrid evolutionary algorithms, for instance the GA-EM
algorithm [20]. We also plan to use other encodings of covariance matrices, especially
based on Givens angles [2]. Finally, we are going to to test the performance of DE-
EM method in other applications of GMMs, for instance in discriminant analysis [9].

120

Estimation of parameters of Gaussian mixture models by a hybrid method ...

Acknowledgments

This work was supported by the grant S/WI/2/2013 from Bialystok University of
Technology.

References

[1] J. L. Andrews and P. D. McNicholas. Using evolutionary algorithms for model-
based clustering. Pattern Recognit. Lett., 34(9):987–992, 2013.

[2] C. Ari, S. Aksoy, and O. Arikan. Maximum likelihood estimation of Gaussian
mixture models using stochastic search. Pattern Recognit., 45(7):2804–2816,
2012.

[3] Christophe Biernacki, Gilles Celeux, and Gérard Govaert. Choosing starting
values for the EM algorithm for getting the highest likelihood in multivariate
Gaussian mixture models. Comput. Stat. Data Anal., 41(3):561–575, 2003.

[4] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York,
2006.

[5] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer. Self-adapting
control parameters in differential evolution: A comparative study on numeri-
cal benchmark problems. IEEE Transactions on Evolutionary Computation,
10(6):646–657, 2006.

[6] A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolu-
tionary algorithms. IEEE Trans. Evol. Comput., 3(2):124–141, 1999.

[7] C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis, and
density estimation. J. Am. Stat. Assoc., 97(458):611–631, 2002.

[8] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins, Balti-
more, MD, 1996.

[9] T. Hastie and R. Tibshirani. Discriminant analysis by Gaussian mixtures. J.
Royal Stat. Soc. Ser. B, 58(1):155–176, 1996.

[10] L. Hubert and P. Arabie. Comparing partitions. J. Classif., 2(1):193–218, 1985.
[11] R.A. Johnson and D.W. Wichern. Applied Multivariate Statistical Analysis.

Prentice Hall, 6th edition, 2007.
[12] W. Kwedlo. Learning finite Gaussian mixtures using differential evolution.

Zeszyty Naukowe Politechniki Białostockiej. Informatyka, 5:19–33, 2010.
[13] W. Kwedlo. A new method for random initialization of the EM algorithm

for multivariate Gaussian mixture learning. In Proceedings of the 8th Inter-
national Conference on Computer Recognition Systems CORES 2013, pages
81–90. Springer, 2013.

121

Wojciech Kwedlo

[14] W. Kwedlo. A parallel EM algorithm for Gaussian mixture models imple-
mented on a NUMA system using OpenMP. In Proceedings of the 22nd Eu-
romicro International Conference on Parallel, Distributed, and Network-Based
Processing PDP 2014, pages 292–298. IEEE CPS, 2014.

[15] R. Maitra and V. Melnykov. Simulating data to study performance of finite mix-
ture modeling and clustering algorithms. J. Comput. Graph. Stat., 19(2):354–
376, 2010.

[16] Ranjan Maitra. Initializing partition-optimization algorithms. IEEE/ACM
Trans. Comput. Biol. Bioinforma., 6(1):144–157, 2009.

[17] A. M. Martinez and J. Vitria. Learning mixture models using a genetic version
of the EM algorithm. Pattern Recognition Letters, 21(8):759–769, 2000.

[18] G. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York, 2000.
[19] H. Permuter, J. Francos, and I. Jermyn. A study of Gaussian mixture models

of color and texture features for image classification and segmentation. Pattern
Recognit., 39(4):695–706, 2006.

[20] F. Pernkopf and D. Bouchaffra. Genetic-based EM algorithm for learning Gaus-
sian mixture models. IEEE Trans. Pattern Analysis Mach. Intell., 27(8):1344–
1348, 2005.

[21] R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the
EM algorithm. SIAM Rev., 26(2):195–239, 1984.

[22] D.A. Reynolds, T.F. Quatieri, and R.B. Dunn. Speaker verification using
adapted Gaussian mixture models. Digit. Signal Process., 10(1):19–41, 2000.

[23] R. Storn and K. Price. Differential evolution - a simple and efficient heuristic
for global optimization over continuous spaces. J. Glob. Optim., 11(4):341–359,
1997.

[24] Q. Zhao, V. Hautamäki, I. Kärkkäinen, and P. Fränti. Random swap EM algo-
rithm for Gaussian mixture models. Pattern Recognit. Lett., 33(16):2120–2126,
2012.

122

Estimation of parameters of Gaussian mixture models by a hybrid method ...

ESTYMACJA PARAMETRÓW MODELI MIESZANIN
ROZKŁADÓW NORMALNYCH PRZY POMOCY

METODY HYBRYDOWEJ ŁĄCZĄCEJ
SAMOADPTACYJNĄ EWOLUCJĘ RÓŻNICOWĄ

Z ALGORYTMEM EM

Streszczenie: W pracy poruszono problem uczenia modeli mieszanin rozkładów normal-
nych. Zaproponowano nowe podejście, nazwane DE-EM, oparte na hybrydyzacji samodap-
tacyjnego algorytmu ewolucji różnicowej i klasycznego algorytmu EM. W nowej metodzie
rozwiązanie otrzymane jako wynik operatorów mutacji i krzyżowania jest poddawane opty-
malizacji lokalnej, prowadzonej aż do momentu uzyskania zbieżności, przez algorytm EM.
Aby uniknąć problemu z reprezentacją macierzy kowariancji i niedopuszczalnością rozwią-
zań użyto metody, w której macierze kowariancji są kodowane przy pomocy dekompozycji
Cholesky’ego. W badaniach symulacyjnych modele mieszanin rozkładów normalnych za-
stosowano do grupowania danych syntetycznych. Wyniki eksperymentów wskazują, że me-
toda DE-EM osiąga lepsze wyniki niż standardowa technika wielokrotnego startu algorytmu
EM. Dla zbiorów danych z dużą liczbą cech, metoda osiąga lepsze wyniki niż technika lo-
sowej wymiany rozwiązań połączona z algorytmem EM.

Słowa kluczowe: Mieszniny rozkładów normalnych, ewolucja różnicowa, algorytm EM,
grupowanie danych

Artykuł zrealizowano w ramach pracy badawczej S/WI/2/2013.

123

