Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The limited availability of data on faecal sludge characteristics remains one of the major challenges faced by developing countries in proper management of faecal sludge. In view of the limited financial resources and expertise in these developing countries, there is a need to come up with less-resource-intensive approaches for faecal sludge characterisation. Despite being used substantially in wastewater, there is limited evidence on the use of predictive modelling as a tool for cost-effective characterisation of faecal sludge. In this study, first order multiple linear regression modelling is investigated as a less-resource-intensive approach for accurate prediction of organics (biochemical oxygen demand and chemical oxygen demand) in pit latrine sludge. The predictor variables explored in the modelling include pH, electrical conductivity, total solids, total volatile solids, fixed solids and moisture content. The modelling uses data collected from 80 latrines in unplanned settlements of four cities in Malawi. The study shows that it is possible to reliably predict chemical oxygen demand and biochemical oxygen demand in pit latrine sludge using electrical conductivity and total solids, which require low levels of resources and expertise to determine.
Czasopismo
Rocznik
Tom
Strony
141--145
Opis fizyczny
Bibliogr. 14 poz., tab., rys.
Twórcy
autor
- University of Malawi, The Polytechnic, P/Bag 303, Chichiri, Blantyre 3, Malawi
autor
- University of Malawi, The Polytechnic, P/Bag 303, Chichiri, Blantyre 3, Malawi
autor
- University of Malawi, The Polytechnic, P/Bag 303, Chichiri, Blantyre 3, Malawi
autor
- University of Malawi, The Polytechnic, P/Bag 303, Chichiri, Blantyre 3, Malawi
Bibliografia
- 1. Aguado D., Ferrer A., Seco A., Ferrer J. 2006.Comparison of different predictive models for nu- trient estimation in a sequencing batch reactor for wastewater treatment. Chemometrics and Intelli- gent Laboratory Systems, 84(1), 75–81.
- 2. Barker L.E. and Shaw K.M. 2015. Best (but oft- forgotten) practices: checking assumptions con- cerning regression residuals. The American Jour- nal of Clinical Nutrition, 102(3), 533–539.
- 3. Bassan M., Tchonda T., Yiougo L., Zoellig H., Ma- hamane I., Mbéguéré M., Strande L. 2014. Char- acterization of faecal sludge during dry and rainy seasons in Ouagadougou, Burkina Faso. Proc. 36th WEDC International Conference, 1–5.
- 4. Bozdogan H. 2000. Akaike’s information criterion and recent developments in information complexity. Journal of Mathematical Psychology, 44(1), 62–91.
- 5. Brdjanovic D., Mithaiwala M., Moussa M.S., Amy G., Van Loosdrecht M.C.M. 2007. Use of modelling for optimization and upgrade of a tropical wastewater treatment plant in a developing country. Water Science and Technology, 56(7), 21–31.
- 6. Frost J. 2013. Multiple regression analysis: Use adjusted R-squared and predicted R-squared to include the correct number of variables. Minitab Blog, 13(6).
- 7. Hair J.F., Black W.C., Babin B.J., Anderson R.E., Tatham R.L. 2013. Multivariate data analysis). Upper Saddle River, NJ: Prentice Hall.
- 8. Khataee A.R. and Kasiri M.B. 2011. Modeling of biological water and wastewater treatment processes using artificial neural networks. CLEAN– Soil, Air, Water, 39(8), 742–749.
- 9. Moustris K.P., Nastos P.T., Larissi I.K. Paliatsos A.G, 2012. Application of multiple linear regression models and artificial neural networks on the surface ozone forecast in the greater Athens area, Greece. Advances in Meteorology, 2012, 1–8.
- 10. Nasr M.S., Moustafa M.A., Seif H.A., El Kobrosy G. 2012. Application of Artificial Neural Network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-EGYPT. Alexandria Engineering Journal, 51(1), 37–43.
- 11. Pedhazur E.J. and Schmelkin L.P. 2013. Measurement, design, and analysis: An integrated approach. Psychology Press.
- 12. Singh K.P., Basant N., Malik A., Jain G. 2010. Modeling the performance of “up-flow anaerobic sludge blanket” reactor based wastewater treatment plant using linear and nonlinear approaches–a case study. Analytica Chimica Acta, 658(1), 1–11.
- 13. Strande L., Ronteltap M., Brdjanovic D. 2014. Faecal Sludge Management: Systems Approach for Implementation and Operation. IWA Publishing.
- 14. Vatcheva K.P., Lee M., McCormick J.B., Rahbar M.H. 2016. Multicollinearity in regression analyses conducted in epidemiologic studies. Epidemiology (Sunnyvale, Calif.), 6(2).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10421914-0437-4253-bbe7-396a780b8b6a