PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Physical and Chemical Properties of Composite Insoles on the Microclimate in Protective Footwear

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ właściwości fizykochemicznych kompozytowych wkładek do obuwia ochronnego na poprawę mikroklimatu
Języki publikacji
EN
Abstrakty
EN
The objective of the paper was to evaluate the influence of the physical and chemical properties of composite insoles on the microclimate in protective footwear under conditions of hard physical work. The study used the sorption kinetics of composite insoles using artificial sweat with acidic and alkaline pH, the porosity of the composite structure, and measurement of the microclimate inside the footwear in a test involving human subjects under laboratory conditions on a treadmill. The results revealed that sorption kinetics largely depend on sweat pH – sorption is slower at alkaline pH (less effective moisture transport across the insole) than at acidic pH (more effective moisture transport). Strong correlations were found between the sorption parameters of the composite insole at alkaline pH and the porosity parameters of its structure. The microclimate measurements showed optimum temperature and humidity levels inside the footwear, which remained within the thresholds of comfort of use defined in the literature. It was found that composite insoles containing a polycarbonate melt-blown nonwoven may be recommended in particular for non-permeable protective footwear in conditions of very intensive physical work, which is accompanied by a shift in pH from acidic to alkaline.
PL
Celem prezentowanych badań była analiza zdolności sorpcyjnych, zaprojektowanych innowacyjnych wkładek do obuwia ochronnego, w całości wykonanych z gumy w aspekcie porowatej budowy wyrobu włókienniczego. Zakres prac uwzględniał badania fizyko – chemiczne wkładek w zakresie kinetyki sorpcji potu o różnym pH (kwaśnym i zasadowym) i parametrów porowatości oraz badania użytkowe w zakresie pomiaru mikroklimatu w szczelnym obuwiu ochronnym. W badaniach użytkowych wkładki kompozytowe porównywano z wkładkami komercyjnymi powszechnie stosowanymi w obuwiu ochronnym. Na podstawie badan stwierdzono, że wkładki kompozytowe zbudowane w warstwie środkowej z włókniny melt-blown z włókien poliwęglanowych zapewniają bardzo dobrą sorpcję potu o pH zasadowym, typowego dla warunków intensywnego wysiłku w szczelnym obuwiu ochronnym.
Rocznik
Strony
89--95
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Poland, Łódź, Central Institute for Labour Protection - National Research Institute
autor
  • Poland, Łódź, Central Institute for Labour Protection - National Research Institute
Bibliografia
  • 1. Akbar-Khanzadeh F, Bisesi MS, Rivas RD. Comfort of personal protective equipment. Applied Ergonomics 1995; 26. 3: 195-198.
  • 2. Kuklane K, Geng Q, Holmér I. Thermal effects of steel toe caps in footgear. International Journal of Industrial Ergonomics 1999; 23, 5-6: 431-438.
  • 3. Garner JC, Wade C, Garten R, Harish Chander, Edmund Acevedo, The influence of firefighter boot type on balance. International Journal of Industrial Ergonomics 2013; 43: 77-81.
  • 4. Irzmańska E, Dutkiewicz J, Irzmański R. New approach to assessing comfort of use of protective footwear with a textile liner and its impact on foot physiology. Textile Research Journal 2014; 84, 7: 728–738.
  • 5. Irzmańska E. Footwear use at workplace and recommendations for the improvement of its functionality and hygiene. AUTEX Research Journal 2014;
  • 14, 2. DOI: 10.2478/aut-2014-0005. 6. Gran G. Investigation on shoe climate and foot comfort. J. Soc. Leath Trades. Chem. 1957; 43, 2: 182-19721.
  • 7. Hole LG. Sweat disposal from footwear and health and hygiene of foot skin. Journal of the Society of Cosmetic Chemists 1973; 24: 43-63
  • 8. Bertaux E, Derler S, Rossi RM, Zeng X, Koehl L, Ventenat V. Textile, physiological, and sensorial parameters in sock comfort. Textile Research Journal 2010; 80, 17: 1803-1810.
  • 9. Gulbiniene A, Jankauskaite V, Kondratas A. Investigation of the Water Vapour Transfer Properties of Textile Laminates for Footwear Linings. Fibres & Textiles in Eastern Europe 2011; 19, 3, 86: 78-8.
  • 10. Heus R, Schols E. Water vapour transport as a determinant of comfort in evaluating shoes. Elsevier Ergonomics Book Series 2005; 3: 445-448.
  • 11. Ogden JM. Footwear insole with a moisture absorbent inner layer. United States Patent 5727336, 1998.
  • 12. Fohr JP, Couton D, Treguier G. Dynamic heat and water transfer through layered fabrics. Textile Research Journal 2002; 72.1: 1-12.
  • 13. Irzmańska E, Brochocka A, Majchrzycka K. Textile Composite Materials with Bioactive Melt-Blown Nonwovens for Protective Footwear. Fibres & Textiles in Eastern Europe 2012; 20, 6A, 95: 119- 125.
  • 14. Grzybowska-Pietras J, Malkiewicz J. Influence of technologic parameters on filtration characteristics of nonwoven fabrics obtained by padding. Fibres & Textiles in Eastern Europe 2007; 15, 5-6, 64-65: 82-85.
  • 15. Frydrych I, Goetzendorf-Grabowska B, Prośniak P. Anti-sweat garment inserts (in Polish). Przegląd Włókienniczy – WOS 2003; 9: 9-15.
  • 16. PN-EN ISO 105-E04:2011. Textiles – Tests for colour fastness. Part E04: Colour fastness to perspiration.
  • 17. Kuklane K, Holmer J. Effect of sweating on insulation of footwear. International Journal of Occupational Safety and Ergonomics 1998; 4, 2: 123-136.
  • 18. Nigel AS, Taylor JN, Caldwell IB. Mekjavic, The sweating foot: local differences in sweat secretion during exercise – induced hyperthermia, Aviation. Space and Environmental Medicine 2006; 77, 10.
  • 19. Silverstein R, Bassler G. Spectrometric Identification of Organic Compounds. Wiley, New York, 1963.
  • 20. Morton DH, Harley JWS. Physical properties of textile fibres. New York, 1993.
  • 21. Kenney WL, Wilmore J, Costill D. Physiology of sport and exercise web study guide. 5th edition online study guide. Web Resource ISBN-13: 9781450423458.
  • 22. Good RJ. Contact angle, wetting and adhesion – a critical review. Journal of Adhesion Science and Technology 1992; 6: 1269-1302.
  • 23. Patnaik A, et al. Wetting and wicking in fibrous materials. Textile Progress 2006; 38.1: 1-105.
  • 24. Petrulyte S, Baltakyte R. Liquid Sorption and Transport in Woven Structures. FIBRES & TEXTILES in Eastern Europe 2009; ; 17, 2, 73: 39-45.
  • 25. Adomaviciene M, Schwarz A, Stanys S. Influence of Liquid Nature on Wetting Behaviour of an Inclined Fibre. FIBRES & TEXTILES in Eastern Europe 2007; 15, 5-6: 64-65.
  • 26. Bogusławska-Bączek M, Hes L. Effective Water Vapour Permeability of Wet Wool Fabric and Blended Fabrics. FIBRES & TEXTILES in Eastern Europe 2013; 1, 97: 67-71.
  • 27. Hes L, Loghin, C. Heat, Moisture and Air Transfer Properties of Selected Woven Fabrics in Wet State. Journal of Fiber Bioengineering & Informatics 2008: 968-976.
  • 28. Mangat MM, Militký J, Hes L. Thermal Resistance of Cotton Denim Fabric under various Moisture Conditions. Journal of Fibres and Textiles 2012; 1: 36-47.
  • 29. Dutkiewicz JK. Nonwoven Structures for Absorption of Body Fluids. Brussels: EDANA 2003, ISBN 2-930159-46-4.
  • 30. Woodcock AM. Moisture transfer in textile system. Textile Research Journal 1966; 36: 855-856.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1041036f-b658-487d-96f9-0c7eb196a44e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.