Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article focuses on topology optimization using the Finite Element Method (FEM) in the context of mechanical design and structural engineering. The analysis was based on a robotarm component, which is important for minimising its mass due to the way it moves on steel structures such as mining shaft towers. FEA simulations of the non-optimized workpiece were carried out, followed by iterative mass reduction of the workpiece by editing its geometry. Two approaches were compared: manual weight reduction by the designer and topology optimization using the Shape Generator. The presented results answer the question posed in the introduction whether topology optimization using the Shape Generator can yield better results than manual optimization based on the engineering intuition of an experienced designer. The paper also answers the question of at which stage of design it is betterto use tools such as the shape generator. It is confirmed that topologyoptimization can significantly reduce the weight of the designed component, which is important especially for structures subject to special requirements, such as in the case of equipment used in mining. The authors describe what the effectiveness of the optimization may depend on.
Czasopismo
Rocznik
Tom
Strony
30--48
Opis fizyczny
Bibliogr. 19 poz., rys., zdj.
Twórcy
autor
- PONAR Wadowice S.A., Św. Jana Pawła II 10, 43-170 Łaziska Górne
autor
- KOMAG Institute of Mining Technology, Pszczyńska 37, 44-101 Gliwice, Poland
Bibliografia
- [1] Kendibilir A., Kefal A.: Enhanced ship cross-section design methodology using peridynamics topology optimization. Elsevier, Ocean Engineering, 2023, Vol. 286. DOI: 10.1016/j.oceaneng.2023.115531
- [2] Krog L., Tucker A., Kemp M., Boyd R.: Topology Optimisation of Aircraft Wing Box Ribs. MAO-30: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conferences, 2004. DOI: 10.2514/6.2004-4481
- [3] Mancuso A., Saporito A., Tumino D.: Designing the internal reinforcements of a sailing boat using atopology optimization approach. Elsevier, Applied Ocean Research, 2022, Vol. 129. DOI: 10.1016/j.apor.2022.103384
- [4] Nguyen N. P., Maghsoudi E., Roberts S. N., Kwon B.: Shape optimization of pin fin array in a cooling channel using genetic algorithm and machine learning. Elsevier, International Journal of Heat and Mass Transfer, 2023, Vol. 202. DOI: 10.1016/j.ijheatmasstransfer.2022.123769
- [5] Tiago P. Ribeiro, Luís F. A. Bernardo, Jorge M. A. Andrade: Topology Optimisation in Structural Steel Design for Additive Manufacturing. Applied Sciences, 2021, Vol 11, Issue 5. DOI: 10.3390/app1105211
- [6] Alfouneh M., Keshtegar B.: STO-DAMV: Sequential topology optimization and dynamical accelerated mean value for reliability-based topology optimization of continuous structures. Elsevier, Computer Methods in Applied Mechanics and Engineering, 2023, Vol. 417. DOI: 10.1016/j.cma.2023.116429
- [7] Yang X.Y., Xie Y.M., Steven G.P.: Evolutionary methods for topology optimisation of continuous structures with design dependent loads. Elsevier, 2004, Vol 83, Issues 12-13, Pages 956-963. DOI: 10.1016/j.compstruc.2004.10.011
- [8] Barkanov E.: Introduction The Finite Elements Method. Institute of Materials and Structures Faculty of Civil Engineering Riga Technical University, 2001.
- [9] Zienkiewicz O. C., Taylor R. L., ZHU J. Z.: The Finite Element Method. Vol 1: Its Basis & Fundamentals. Vol 2: For Solid and structural mechanics. Sixth edition. Elsevier Butterworth –Heinemann, Oxford 2005.
- [10] Bureerat S., Limtragool J.: Performance enhancement of evolutionary search for structural topology optimisation. Elsevier, 2006, Vol 42, Issues 6, Pages 547-566. DOI: 10.1016/j.finel.2005.10.011
- [11] Kiyono C. Y., Picelli R., Sivapuram R., De Lean D. M., Silva E. C. N.: Stress-based topology optimization approach using binary variables and geometry trimming. Elsevier, Finite Elements in Analysis and Design, 2023, Vol. 227. DOI: 10.1016/j.finel.2023.104044
- [12] Qiu W., Wang Q., Gao L., Xio Z.: Stress-based evolutionary topology optimization via XIGA with explicit geometric boundaries. Elsevier, International Journal of Mechanical Sciences, 2023, Vol. 256. DOI: 10.1016/j.ijmecsci.2023.108512
- [13] Vertonghen L., Irisarri F-X., Bettebghor D., Desmorat B.: Gradient-based concurrent topology and anisotropy optimization for mechanical structures. Elsavier, Computer Methods in Applied Mechanics and Engineering, 2023, Vol. 412. DOI: 10.1016/j.cma.2023.116069
- [14] https://3d.edu.pl/co-to-jest-optymalizacja-topologii-proste-wyjasnienie/ [accessed: 31.01.2024]
- [15] Chiandussi G., Gaviglio I., Ibba A.: Topology optimisation of an automotive component without final volume constraint specification. Elsevier, 2004, Vol 35, Issues 10-11, Pages 609-617. DOI: 10.1016/j.advengsoft.2003.07.002
- [16] Kendibilir A., Kefal A., Sohouli A., Yildiz M., Koc B., Suleman A.: Peridynamics topology optimization of three-dimensional structures with surface cracks for additive manufacturing. Elsavier, Computer Methods in Applied Mechanics and Engineering, 2022, Vol. 401, Part B. DOI: 10.1016/j.cma.2022.115665
- [17] Korus K., Salamak M., Jasiński M.: Optimization of geometric parameters of arch bridges using visual programming FEM components and genetic algorithm. Elsevier, Engineering Structures, 2021, Vol. 241. DOI: 10.1016/j.engstruct.2021.112465
- [18] Pac P., Tokarczyk J., Prostański D., Rosikowski P.: Alternatywna metoda analizy wyników symulacji MES w oprogramowaniu CAD bez zaawansowanych narzędzi postprocesingu. Interdyscyplinarne badania młodych naukowców, InterTechDOC 2023. ISBN 978-83-7880-905-0
- [19] https://help.autodesk.com/view/INVNTOR/2021/ENU/?guid=GUID-D74F47F3-FE22-44EF-85BE-7C6B1F56DCF9 [accessed: 31.01.2024]
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-103cda1e-83c1-4d09-88ca-2c910f0a1f60