Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Bone tissue is a dynamic tissue, possessing different functional requirements at different scales. This layered organization indicates the existence of a hierarchical structure, which can be characterized to distinguish macro-scale from micro-scale levels. Structurally, both scales can be linked by the use of classic multiscale homogenization techniques. Since in bone tissue each micro-scale domain is distinct form its neighbour, applying a classic multiscale homogenization technique to a complete bone structure could represent an inadmissible computational cost. Thus, this work proposes a homogenization methodology that is computationally efficient, presenting a reduced computational cost, and is capable to define the homogenized microscale mechanical properties of the trabecular bone highly heterogeneous medium. Methods: The methodology uses the fabric tensor concept in order to define the material principal directions. Then, using an anisotropic phenomenological law for bone tissue correlating the local apparent density with directional elasticity moduli, the anisotropic homogenized material properties of the micro-scale patch are fully defined. To validate the developed methodology, several numerical tests were performed, measuring the sensitivity of the technique to changes in the micro-patch size and preferential orientation. Results: The results show that the developed technique is robust and capable to provide a consistent material homogenization. Additionally, the technique was combined with two discrete numerical techniques: the finite element method and radial point interpolation meshless method. Conclusions: Structural analyses were performed using real trabecular patches, showing that the proposed methodology is capable to accurately predict the micro-scale patch mechanical behavior in a fraction of the time required by classic homogenization techniques.
Czasopismo
Rocznik
Tom
Strony
101--113
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
- INEGI – Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
- FEUP – Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
autor
- INEGI – Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
- ISEP – Department of Mechanical Engineering, School of Engineering, Polytechnic of Porto, Porto, Portugal
autor
- ICBAS – Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
autor
- Muscular and Skeletal Pathology Research, Human Anatomy and Embryology Unit, Universitat de Barcelona, Barcelona, Spain
autor
- INEGI – Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
Bibliografia
- [1] ABDELWAHED B., ABDESSALEM C., TAREK M., RIDHA H., ALI M., Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method, International Journal for Numerical Methods in Biomedical Engineering, 30 (3), 318–338, DOI: 10.1002/cnm.2604.
- [2] BELINHA J., Meshless Methods in Biomechanics: Bone Tissue Remodelling Analysis, V.E. Brimkov, R.P. Barneva (Eds.), Dordrecht: Springer Netherlands; 2014. (Lecture Notes in Computational Vision and Biomechanics), DOI: 10.1007/978-94-007-4174-4.
- [3] BELINHA J., JORGE R.M.N., DINIS L.M.J.S., A meshless microscale bone tissue trabecular remodelling analysis considering a new anisotropic bone tissue material law, Computer Methods in Biomechanics and Biomedical Engineering. 2012, 5842 (August 2012), 1–15, DOI: 10.1080/10255842.2012.654783.
- [4] BELYTSCHKO T., LU Y.Y., GU L., Element-free Galerkin methods, International Journal for Numerical Methods in Engineering, 1994, 37 (2), 229–256, http://onlinelibrary.wiley.com/doi/10.1002/nme.1620370205/abstract [accessed: May 9, 2016], DOI: 10.1002/nme.1620370205.
- [5] CARTER D.R., FYHRIE D.P., WHALEN R.T., Trabecular bone density and loading history: Regulation of connective tissue biology by mechanical energy, Journal of Biomechanics, 1987, 20 (8), 785–794, DOI: 10.1016/0021-9290(87)90058-3.
- [6] CARTER D.R., VAN DER MEULEN M.C., BEAUPRÉ G.S., Mechanical factors in bone growth and development, Bone, 1996, 18 (1 Suppl.), 5S–10S, DOI: 10.1016/8756-3282(95)00373-8.
- [7] COWIN S.C., The relationship between the elasticity tensor and the fabric tensor, Mechanics of Materials, 1985, 4 (2), 137–147, DOI: 10.1016/0167-6636(85)90012-2.
- [8] COWIN S.C., DOTY S.B., Tissue Mechanics, Springer Science, 2007.
- [9] DINIS L.M.J.S., JORGE R.M.N., BELINHA J., A 3D shell-like approach using a natural neighbour meshless method: Isotropic and orthotropic thin structures, Composite Structures, 2010, 92 (5), 1132–1142, DOI: 10.1016/j.compstruct.2009.10.014.
- [10] DOROZHKIN S.V., Nanosized and nanocrystalline calcium orthophosphates, Acta Biomaterialia., 2010, 6 (3), 715–734, DOI: 10.1016/j.actbio.2009.10.031.
- [11] HART R.T., DAVY D.T., HEIPLE K.G., A Computational Method for Stress Analysis of Adaptive Elastic Materials With a View Toward Applications in Strain-Induced Bone Remodeling, Journal of Biomechanical Engineering, 1984, 106 (4), 342, DOI: 10.1115/1.3138503.
- [12] HUISKES R., CHAO E.Y.S., A survey of finite element analysis in orthopedic biomechanics: The first decade, Journal of Biomechanics, 1983, 16 (6), 385–409, DOI: 10.1016/0021-9290(83)90072-6.
- [13] LANDIS W.J., The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix, Bone, 1995, 16 (5), 533–544, DOI: 10.1016/8756-3282(95)00076-P.
- [14] LIU W.K., JUN S., ZHANG Y.F., Reproducing kernel particle methods, International Journal for Numerical Methods in Fluids, 1995, 20 (8–9), 1081–1106, DOI: 10.1002/fld.1650200824.
- [15] MORENO R., BORGA M., SMEDBY O., Techniques for Computing Fabric Tensors – A Review, [in:] Mathematics and Visualization, 2014, Vol. 5. 271–292, DOI: 10.1007/978-3-642-54301-2_12.
- [16] MORENO R., SMEDBY Ö., PAHR D.H., Prediction of apparent trabecular bone stiffness through fourth-order fabric tensors, Biomechanics and Modeling in Mechanobiology, 2016, 15 (4), 831–844, http://link.springer.com/10.1007/s10237-015-0726-5, [accessed: Nov. 14, 2016], DOI: 10.1007/s10237-015-0726-5.
- [17] NATALI A.N., CARNIEL E.L., PAVAN P.G., Constitutive modelling of inelastic behaviour of cortical bone, Medical Engineering and Physics, 2008, 30 (7), 905–912, DOI: 10.1016/j.medengphy.2007.12.001.
- [18] WANG J.G., LIU G.R., A point interpolation meshless method based on radial basis functions, International Journal for Numerical Methods in Engineering, 2002, 54 (11), 1623–1648, http://doi.wiley.com/10.1002/nme.489 [accessed: May 9, 2016], DOI: 10.1002/nme.489.
- [19] WHITEHOUSE W.J., The quantitative morphology of anisotropic trabecular bone, Journal of Microscopy, 1974, 101 (2), 153–168, DOI: 10.1111/j.1365-2818.1974.tb03878.x.
- [20] WNEK G.E., BOWLIN G.L., Encyclopedia of Biomaterials and Biomedical Engineering, 2nd Ed., G.E. Wnek, L.B. Gary (Eds.), CRC Press, New York 2008.
- [21] WOLFF J., The Law of Bone Remodelling, Journal of Anatomy, 1886, 155, 217, DOI: 10.1097/00006534-198810000-00036.
- [22] ZYSSET P.K., A review of morphology–elasticity relationships in human trabecular bone: theories and experiments, Journal of Biomechanics, 2003, 36(10), 1469–1485, https://www.sciencedirect.com/science/article/pii/S0021929003001283, [accessed: Apr. 16, 2018] DOI: 10.1016/S0021-9290(03)00128-3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10330000-7f96-4381-88e6-d2914c389e03