PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthetic Textile Wastewater Treatment using Potassium Ferrate(VI) – Application of Taguchi Method for Optimisation of Experiment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Oczyszczanie syntetycznych ścieków farbiarskich przy wykorzystaniu żelazianu(VI) potasu – zastosowanie metody Taguchi do optymalizacji eksperymentu
Języki publikacji
EN
Abstrakty
EN
The article attempts to assess the usefulness of the Taguchi method to optimise the purification process of synthetic textile wastewater (pH 6.7 - 7.2, Conductivity = 6.71 - 6.84 mS/cm, Salinity = 3581 - 3648 mg NaCl/l, Colour = 560 - 4710 mg Pt/l, COD = 2220 - 2290 mg O2/l, TOC = 394 - 551 mg/l) using K2FeO4. The research was conducted using 3 types of wastewater containing anionic detergent (sodium lauryl sulfate, 100 mg/l) and differing only in the concentration of azo dye Acid Green 16 (AG 16). Technical K2FeO4 was used as an oxidiser, which was subjected to physico-chemical analysis (purity, UV-VIS spectrum, surface characteristics and chemical composition using SEM and EDX methods). For planning and optimising the wastewater treatment process, the Taguchi method was used for four input parameters: pH (2, 7, 12), reaction time (10, 30, 50 min), AG 16 concentrations (20, 120, 220 mg/l) and K2FeO4 concentrations (25, 125, 225 mg/l), for which 9 experiments were performed in accordance with the plan adopted. Test result analysis allowed to indicate the optimal values for individual input parameters (pH 2, time = 50 min, AG 16 = 20 mg/l, K2FeO4 = 125 mg/l). Under these conditions, visual discoloration of wastewater was obtained (AG 16 = 0.4 mg/l, ↓98% ), colour removal (66 mg Pt/l, ↓88%) and DOC (249 mg/l, ↓37%).
PL
W artykule podjęto próbę oceny przydatności metody Taguchi do optymalizacji procesu oczyszczania syntetycznych ścieków farbiarskich (pH = 6.7-7.2, Conductivity = 6.71-6.84 mS/cm, Salinity = 3581-3648 mg NaCl/dm3, Colour = 560-4710 mg Pt/dm3, COD = 2220-2290 mg O2/dm3, TOC = 394-551 mg/dm3) z zastosowaniem K2FeO4. Badania prowadzono z wykorzystaniem 3 rodzajów ścieków zawierających detergent anionowy (laurylosiarczan sodu, 100 mg/dm3) i różniących się jedynie stężeniem barwnika Acid Green 16 (AG 16). Jako utleniacz zastosowano techniczny K2FeO4, który poddano analizie fizykochemicznej (czystość, widmo UV-VIS, charakterystyka powierzchni i skład chemiczny z zastosowaniem metod SEM i EDX). Do planowania i optymalizacji procesu oczyszczania ścieków zastosowano metodę Taguchi dla czterech parametrów wejściowych: pH (2, 7, 12), czasu reakcji (10, 30, 50 min.), stężenia AG 16 (20, 120, 220 mg/dm3) oraz stężenia K2FeO4 (25, 125, 225 mg/dm3), dla których wykonano 9 eksperymentów zgodnie z przyjętym planem. Analiza wyników badań pozwoliła na wskazanie optymalnych wartości dla poszczególnych parametrów wejściowych (pH 2, czas 50 min., AG 16=20 mg/dm3, K2FeO4 = 125 mg/dm3). W tych warunkach uzyskano wizualne odbarwienie ścieków (AG 16 = 0.4 mg/dm3, ↓98% ), zmniejszenie barwy (66 mg Pt/dm3, ↓88% ) oraz DOC (249 mg/dm3, ↓37%).
Rocznik
Strony
104--109
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Chemiqua Company, Skawińska Str. 25/1, 31-066 Kraków, Poland
  • Silesian University of Technology, Institute of Water and Wastewater Engineering, ul. Konarskiego 18, 44-100 Gliwice, Poland
autor
  • The Central Mining Institute, Katowice, Poland
autor
  • University of Rzeszów, Faculty of Biotechnology, ul. Pigonia 1, 35-310 Rzeszów, Poland
autor
  • State Higher Vocational School in Tarnów, Institute of Mathematical and Natural Science, ul. Mickiewicza 8, 33-100 Tarnów, Poland
Bibliografia
  • 1. Ihos M, Bocea G, Iovi A. Use of Dimensionally Stable Anodes for the Electrochemical Treatment of Textile Wastewaters. Chemical Bulletin of ”Politechnica” University of Timisoara, Romania 2005; 50(64)(1-2): 83–86.
  • 2. Modak P. The Textile Industry and the Environment. Technical Report Series/UNEP-IEO. UNEP. Industry and Environment 1994, 16.
  • 3. Vlyssides AG, Papaioannou D, Loizidoy M, Karlis PK, Zorpas AA. Testing an Electrochemical Method for Treatment of Textile Dye Wastewater. Waste Management 2000; 20(7): 569–574.
  • 4. Quader AKMA. Treatment of Textile Wastewater with Chlorine: an Effective Method. Chemical Engineering Reaserch Bulletin 2010; 14: 59-63.
  • 5. Solis MA, Solis HI, Manjarrez PN, Flores M. Microbial Decolouration of Azo Dyes: A Review. Process Biochemistry 2012; 47: 1723–1748.
  • 6. Lin SH, Chen ML. Treatment of Textile Wastewater by Chemical Methods for Reuse. Water Research 1997; 31(4): 868–876.
  • 7. Kumar P, Prasad B, Mishra IM, Chand S. Decolorization and COD Reduction of Dyeing Wastewater from a Cotton Textile Mill using Thermolysis and Coagulation. Journal of Hazardous Materials 2008; 153: 635–645.
  • 8. Chandran D. A Review of the Textile Industries Wastewater Treatment Methodologies. International Journal of Scientific & Engineering Research 2016; 7(1): 392-403.
  • 9. Li R, Yang C, Chen H, Zeng G, Yu G, Guo J. Removal of Triazophos Pesticide from Wastewater with Fenton Reagent. Journal of Hazardous Materials 2009; 167(1-3): 10281032.
  • 10. Martinez NSS, Fernández JF, Segura XF, Ferrer AS. Pre-Oxidation of an Extremely Polluted Industrial Wastewater by the Fenton’s Reagent. Journal of Hazardous Materials 2003; 315–322.
  • 11. Szpyrkowicz L, Juzzolino C, Kaul SN. A Comparative Study on Oxidation of Disperse Dyes by Electrochemical Process, Ozone, Hypochlorite and Fenton Reagent. Water Research 2001; 35: 2129–2136.
  • 12. Ledakowicz S, Solecka M, Zylla R. Biodegradation, Decolourisation and Detoxification of Textile Wastewater Enhanced by Advanced Oxidation Processes. Journal of Biotechnology 2001; 89: 175-184.
  • 13. Thomas M, Barbusiński K, Kalemba K, Piskorz PJ, Kozik V, Bąk A. Optimization of the Fenton Oxidation of Synthetic Textile Wastewater using Response Surface Methodology. FIBRES & TEXTILES
  • in Eastern Europe 2017; 25, 6(126): 108-113. DOI: 10.5604/01.3001.0010.5380
  • 14. Płonka I, Pieczykolan B, Barbusiński K, Kalka J, Thomas M, Piskorz PJ. Investigation of the Efficiency of the UV/H2O2 Process on the Removal of Dye Acid Green 16 from Aqueous Solutions: Process Optimization and Toxicity Assessment. FIBRES & TEXTILES in Eastern Europe 2017; 25, 6(126): 103-107. DOI: 10.5604/01.3001.0010.5379.
  • 15. Wood RH. The Heat, Free Energy, and Entropy of the Ferrate(VI) Ion. Journal of the American Chemical Society 1958; 80: 2038–2041.
  • 16. Sharma VK. Potassium Ferrate(VI): an Environmentally Friendly Oxidant. Advances in Environmental Research 2002; 6: 143–156.
  • 17. Ciabatti I, Tognotti F, Lombardi L. Treatment and Reuse of Dyeing Effluents by Potassium Ferrate. Desalination 2010; 250: 222-228.
  • 18. Li G, Wang N, Liu B, Zhang X. Decolorization of Azo Dye Orange II by Ferrate(VI)Hypochlorite Liquid Mixture, Potassium Ferrate(VI) and Potassium Permanganate. Desalination 2009; 249(3): 936-941.
  • 19. Xu GB, Zhang YP, Li GB. Degradation of Azo Dye Active Brilliant Red X-3B by Composite Potassium Ferrate Solution. Journal of Hazardous Materials 2009: 161(2-3): 1299-1305.
  • 20.Moradnia M, Panahifard M, Dindarlo K, Ali Jamali H. Optimizing Potassium Ferrate for Textile Wastewater by RSM. Environmental Health engineering and Management Journal 2016; 3(3): 137-142.
  • 21. Ali N, Neto VF, Mei S. et al. Optimization of the New Time-Modulated CVD Process using the Taguchi Method. Thin Solid Films 2004; 469-470: 154–160.
  • 22. Maghsoodloo S, Ozdemir G, Jordan V, Huang C. Strengths and Limitations of Taguchi's Contributions to Quality, Manufacturing, and Process Engineering. Journal of Manufacturing Systems 2004; 23(2): 73–126.
  • 23. Ozyonar F. Optimization of Operational Parameters of Electrocoagulation Process for Real Textile Wastewater Treatment using Taguchi Experimental Design Method. Desalination and Water Treatment 2016; 57(6): 2389-2399.
  • 24. Gokkus O, Yildiz YS, Yavuz B. Optimization of Chemical Coagulation of Real Textile Wastewater using Taguchi Experimental Design Method. Desalination and Water Treatment 2012; 49: 263-271.
  • 25. Asghar A, Raman AAA, Daud WMAW. A Comparisonof Central Composite Design and Taguchi Method for Optimizing Fenton Process. The Scientific World Journal 2014: Article ID 869120: 1-14.
  • 26. Verma AK, Bhunia P, Dash RR. Decolorization and COD Reduction Efficiency of Magnesium over Iron based Salt for the Treatment of Textile Wastewater Containing Diazo and Antraquinone Dyes. International Journal of Environmental, Chemical, Ecological, Geological ang Geophysical Engineering 2012; 6(6): 365-372.
  • 27. PubChem Open Chemistry Database, https://pubchem.ncbi.nlm.nih.gov/compound/160685#section=Top [21.03.2018].
  • 28. Pieczykolan B, Płonka I, Barbusiński K. Discoloration of Dye Wastewater by Modified UV-Fenton Process with Sodium Percarbonate. Architecture Civil Engineering Environment 2016; 4: 135-140.
  • 29. Sakthivel S, Neppolian B, Arabindoo B, Palanichamy M, Murugesen V. TiO2 Catalysed Photodegradation of Leather Dye, Acid Green 16. Journal of Scientific & Industrial Research 2000; 59: 556-562.
  • 30. PN-EN ISO 10523:2012 Water Quality. Determination of pH.
  • 31. PN-ISO 7887:2012 Water Quality. Examination and Determination of Colour.
  • 32. PN-ISO 15705:2005 Water Quality. Determination of the Chemical Oxygen Demand Index. Small-scale Sealed-tube Method.
  • 33. Schreyer JM, Thompson GW, Ockerman LT. Oxidation of Chromium(III) with Potassium Ferrate(VI). Analytical Chemistry 1950; 22: 1426-1427.
  • 34. Wei Y-L, Wang Y-S, Liu Ch-H. Preparation of Potassium Ferrate from Spent Steel Pickling Liquid. Metals 2015; 5: 1770-1787.
  • 35. Lei B, Zhou G, Cheng T, Du J. Synthesis of Potassium Ferrate by Dry Oxidation and Its Properties in Degradation of Methyl Orange. Asian Journal of Chemistry 2013; 25(1): 27-31.
  • 36. Sohrabi MR, Khvaran A, Shariati S, Shariati S. Removal of Carmoisine Edible Dye by Fenton and Photo Fenton Process using Taguchi Orthogonal Array Design. Arabian Journal of Chemistry 2017; 10: 3523-3531.
  • 37. Ruta R. Application of Taguchi Method Planning Experiments in Tribological Research. Tribologia 2011; 2: 125-141.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10325712-e29c-47ea-ac1c-24697bb0d409
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.