Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study reports on the tribological behaviour of sliding surfaces having cross-shaped micro-dimples on a surface. One wall is smooth and moving at a constant speed against the other fixed wall with dimples. The laser machine helps to create the desired dimples on the surface of the fixed wall. For the purpose of generating hydrodynamic pressure and tribological behaviour, the effects of cross-shaped dimples and oriented cross-shaped dimples have been compared with circular-shaped dimples. Additionally, the impact of sliding speed, dimple area density and depth on tribological behaviour was examined. The findings show that compared with a circular-shaped dimple, an unconventional cross-shaped and orientated cross-shaped dimple generates a higher net hydrodynamic pressure in the fluid domain and offers superior stability between the sliding surfaces. It has been demonstrated that geometrical factors like dimple depth and area density as well as operational factors like sliding speed have a substantial impact on the hydrodynamic average pressure and tribological behaviour of sliding surfaces. The experimental findings indicate that, for the same geometric and operating parameters, cross- and orientated cross-shaped dimples have a 20%–25% lower friction coefficient between the sliding surfaces than circular dimples. The results of the experiment support those of the analysis and CFD.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
393--402
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
- Research Scholar, Gujarat Technological University, Ahmedabad, Gujarat, India
autor
- Mechatronic Engineering Department, G. H. Patel College of Engineering & Technology, V. V. Nagar, Gujarat, India
Bibliografia
- 1. Haardt R., Godet M. Axial vibration of a misaligned radial face seal under a constant closure force. ASLE Trans, 1975;18: 55-61. https://doi.org/10.1080/05698197508982747
- 2. Etsion I. Squeeze effects in radial face seals. J. Lubric. Technol., 1980; 102: 145-152. https://doi.org/10.1115/1.3251452
- 3. Sharoni A., Etsion I. Performance of end-face seals with diametral tilt and coning-hydrodynamic effects. ASLE Trans, 1978; 24: 61-70. https://doi.org/10.1080/05698198108982998
- 4. Lebeck A. O., Teale J. L., Pierce R. E. Hydrodynamic lubrication and wear in wavy contacting face seals. J.Lubric. Technol, 1978; 100: 81-91. https://doi.org/10.1115/1.3453120
- 5. Ruddy A. V., Dowson D., Taylor C. M. The prediction of film thickness in a mechanical face seal with circumferential waviness on both the face and the seat. Journal of Mechanical Engineering Science, 1982; 24(1): 37-43. https://doi.org/10.1243/JMES_JOUR_1982_024_008_02
- 6. Key W. E., Salant R. F., Payvar P., Gopalakrishnan S., Vaghasia G. Analysis of a Mechanical Seal with Deep Hydropads. Tribology Transactions, 1989; 32(4): 481–489. https://doi.org/10.1080/10402008908981916
- 7. Nakano M, Korenaga A, Korenaga A, et al. Applying micro-texture to cast iron surfaces to reduce the friction coefficient under lubricated conditions. Tribol. Lett. 2007; 28: 131–137. https://doi.org/10.1007/s11249-007-9257-2.
- 8. Etsion I. State of the art in laser surface texturing. J. Tribol. 2005;127:248–253. https://doi.org/10.1115/1.1828070.
- 9. Voevodin A.A, Zabinski J.S. Laser surface texturing for adaptive solid lubrication. Wear. 2006;261(11–12):1285–1292. https://doi.org/10.1016/j.wear.2006.03.013.
- 10. Wang X, Adachi K, Otsuka K, Kato K. Optimization of the surface texture for silicon carbide sliding in water. Appl. Surf. Sci. 2006;253(3):1282–1286. https://doi.org/10.1016/j.apsusc.2006.01.076.
- 11. Yan D, Qu N, Li H, Wang X. Significance of dimple parameters on the friction of sliding surfaces investigated by orthogonal experiments. Tribol. Trans. 2010;53:703–712. https://doi.org/10.1080/10402001003728889.
- 12. Etsion I, Burstein L. A model for mechanical seals with regular micro-surface structure. Tribol. Trans. 1996;39:677-683. https://doi.org/10.1080/10402009608983582.
- 13. Etsion I, Halperin G, Greenberg Y. Increasing mechanical seal life with laser-textured seal faces. In Proc. of 15th international confer-ence on fluid sealing BHR group, Maastricht. 1997;3-11.
- 14. Etsion I, Kligerman Y, Halperin G. Analytical and experimental inves-tigation of laser-textured mechanical seal faces. Tribol. Trans. 1999;42:511-516. https://doi.org/10.1080/10402009908982248.
- 15. Kligerman Y, Etsion I. Analysis of the hydrodynamic effects in a surface textured circumferential gas seal. Tribol. Trans. 2001;44(3):472-478. https://doi.org/10.1080/10402000108982483.
- 16. Etsion I, Halperin G. A laser surface textured hydrostatic mechanical seal. Tribol. Trans. 2002;45(3):430-434. https://doi.org/10.1080/10402000208982570.
- 17. Wang X.L, Hsu S.M. Integrated surface technology for friction control: A new paradigm effects of geometric shapes on friction. The 4th chi-na international symposium on tribology. 2004;12-20.
- 18. Yu H, Wang X, Zhou F. Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal con-tacting surfaces. Tribol. Lett. 2010;37:123-130. https://doi.org/10.1007/s11249-009-9497-4
- 19. Bai S, Peng X, Li Y, Sheng S. A hydrodynamic laser surface-textured gas mechanical face seal. Tribol. Lett. 2010;38(2):187-194. https://doi.org/10.1007/s11249-010-9589-1.
- 20. Yu H, Deng H, Haung W, Wang X. The effect of dimple shapes on friction of parallel surfaces. Proceedings of the institution of mechani-cal engineers, Part J: Journal of engineering tribology. 2011;225(8):693-703. https://doi.org/10.1177/1350650111406045.
- 21. Qiu M, Delic A, Raeymaekers B. The effect of texture Shape on the load-carrying capacity of gas-lubricated parallel slider bearings. Tri-bol. Lett. 2012;48:315–327. https://doi.org/10.1007/s11249-012-0027-4.
- 22. Qiu M, Minson B, Raeymaekers B. The effect of texture shape on the friction coefficient and stiffness of gas-lubricated parallel slider bear-ings. Tribology International. 2013;67:278-288. https://doi.org/10.1016/j.triboint.2013.08.004.
- 23. Raeymaekers B, Etsion I, Talke F.E. A model for the magnetic tape/guide interface with laser surface texturing. In proceedings of the ASME/STLE international joint tribology conference. 2008;669–671. https://doi.org/10.1115/IJTC2007-44173.
- 24. Han J, Fang L, Sun J, Ge S. Hydrodynamic lubrication of microdimple textured surface using three-dimensional CFD. Tribology Transac-tions. 2010;53:6:860-870. https://doi.org/10.1080/10402004.2010.496070.
- 25. Han J, Fang L, Sun J, Wang Y, Ge S, Zhu H. Hydrodynamic lubrica-tion of surfaces with asymmetric microdimple. Tribology Transac-tions. 2011;54:4:607-615. https://doi.org/10.1080/10402004.2011.584364.
- 26. Liu W, Ni H, Chen H, Wang P. Numerical simulation and experi-mental investigation on tribological performance of micro-dimples tex-tured surface under hydrodynamic lubrication. International Journal of Mechanical Sciences. 2019;163:105095. https://doi.org/10.1016/j.ijmecsci.2019.105095.
- 27. Wei Y, Tomkowski R, Archenti A. Numerical study of the influence of geometric features of dimple texture on hydrodynamic pressure gen-eration. Metals, 2020;10:361. https://doi.org/10.3390/met10030361.
- 28. Gangadia H, Sheth S. Influence of the Bowtie Shaped Dimples on the Performance of Sliding Surfaces under Hydrodynamic Lubrication. Tribologia - Finnish Journal of Tribology. 2023; 40(1−2): 46−58. https://doi.org/10.30678/fjt.126885
- 29. Gangadia H, Sheth S. The Effect of Star Shaped Dimples on Sliding Surfaces under Hydrodynamic Lubrication, Tribology Online. 2023; 18(7): 457-468. https://doi.org/10.2474/trol.18.457
- 30. ANSYS Fluent Theory Guide, 2013.
- 31. Bakir F, Rey R, Gerber A. G, Belamri T, Hutchinson B. Numerical and experimental investigations of the cavitating behaviour of an inducer. Int. J. Totat. Mech. 2004; 10(1): 15-25. https://doi.org/ 10.1080/10236210490258034
- 32. Cupillard S, Glavatskih S, Cervantes M. J. Computational fluid dy-namics analysis of a journal bearing with surface texturing. Proceed-ings of the Institution of Mechanical Engineers. Part J: Journal of En-gineering Tribology. 2008; 222(2): 97-107. https://doi.org/10.1243/13506501JET319
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-102fe75a-23f6-4c55-a357-9040056c4740