PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic analysis of the influence of potassium on the thermal behavior of kaolin raw material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mineralogy and thermal properties of two kaolin clay samples from Agua Blanca (Hidalgo-México) were determined by XRD, SEM-EDS, TGA-DSC techniques. Kaolin clay A contains a higher Al2O3 and lower impurities (K2O, TiO2, Fe2O3) amount than kaolin clay B, while the SiO2 amount is similar for both kaolin clays. A theoretical approach was carried out by a thermodynamic analysis considering the chemical composition of both kaolin clay samples with the FactSage 7.3 software. Stability phase diagrams were obtained to different K2O content from 0.1 to 3 wt % and temperatures in the range from 600 to 1600°C based on the chemical composition of the kaolin clay samples. The main mineralogical compounds predicted are andalusite (Al2O3•SiO2), K-Potash feldspar (K2O•Al2O3•6SiO2), and the SiO2 polymorphs (quartz, tridymite, and cristobalite) with small amounts of ferric-pseudobrookite (Fe2O5Ti), and rutile (TiO2). As K2O content is increased, the amounts of mullite and tridymite decrease meanwhile the potash feldspar is increased at high temperatures. A liquid phase is formed at around 1350 and 1400°C for the kaolin clay samples A and B, respectively. The viscosity of the melt is increased for the evaluated K2O additions to 1400, 1500, and 1600°C.
Słowa kluczowe
Rocznik
Strony
39--52
Opis fizyczny
Bibliogr. 41 poz., rys., fot.
Twórcy
  • Departamento de Formación Básica Disciplinaria. Instituto Politécnico Nacional –Unidad Profesional Interdisciplinaria de Ingeniería campus Hidalgo (UPIIH-IPN), México
  • Universidad Autónoma del Estado de Hidalgo (UAEH) - Instituto de Ciencias Básicas e Ingeniería
  • Universidad Autónoma del Estado de Hidalgo (UAEH) - Instituto de Ciencias Básicas e Ingeniería
  • Universidad Autónoma del Estado de Hidalgo (UAEH) - Instituto de Ciencias Básicas e Ingeniería
  • Universidad Autónoma del Estado de Hidalgo (UAEH) - Instituto de Ciencias Básicas e Ingeniería
  • Departamento de Formación Básica Disciplinaria. Instituto Politécnico Nacional –Unidad Profesional Interdisciplinaria de Ingeniería campus Hidalgo (UPIIH-IPN), México
  • Departamento de Ingeniería en Metalurgia y Materiales. Instituto Politécnico Nacional –Escuela Superior de Ingeniería Química e Industrias Extractivas (ESIQIE-IPN), México
  • Departamento de Ingeniería en Metalurgia y Materiales. Instituto Politécnico Nacional –Escuela Superior de Ingeniería Química e Industrias Extractivas (ESIQIE-IPN), México
  • Departamento de Ingeniería en Metalurgia y Materiales. Instituto Politécnico Nacional –Escuela Superior de Ingeniería Química e Industrias Extractivas (ESIQIE-IPN), México
Bibliografia
  • ARAS, A., 2004. The change of phase composition in kaolinite- and illite-rich clay-based ceramic bodies. Appl. Clay Sci. 24(3–4), 257–269.
  • BALE, C. W., CHARTRAND, P., DECTEROV, S. A., ERIKSSON, G., HACK, K., BEN MAHFOUD R., MELANQON J., PELTON A.D. AND PETERSEN, S., 2009. FactSage thermochemical software and databases - recent developments. Calphad: Comput. Coupling of Phase Diagrams and Thermochem. 33(2), 295–311.
  • BLOODWORTH, A. J., HIGHLEY, D. E., MITCHELL, C. J., 1993. Industrial Minerals Laboratory Manual: Kaolin BGS Technical Report WG/93/1. 2014.
  • BULENS, M., DELMON, B., 1977. The exothermic reaction of metakaolinite in the presence of mineralizers. Influence of crystallinity. Clays Clay Miner. 25(4), 271–277.
  • BALE C.W., CHARTRAND P., DEGTEROV S.A., ERIKSSON G., HACK K., MAHFOUD R. B., MELANQON J., PELTON A. D., PETERSEN S., 2002. FactSage thermochemical software and databases. Calphad. 26(2), 189–228.
  • CARTER, C. B., NORTON, M. G., 2013. Ceramic Materials: Science and Engineering. Ceram. Mater. Sci. Eng. 1–766.
  • CASTELEIN, O., SOULESTIN, B., BONNET, J. P., BLANCHART, P., 2001. The influence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material. Ceram. Int. 27(5), 517–522.
  • CHAKRABORTY, A. K., 2014. Phase transformation of kaolinite clay. Chapter 1, India, Springer.
  • CHANDRASEKHAR, S., RAMASWAMY, S., 2002. Influence of mineral impurities on the properties of kaolin and its thermally treated products. Appl. Clay Sci. 21(3–4), 133–142.
  • CHEARY, R.W., COELHO, A.A., 1992. A fundamental parameters approach to X-ray line-profile fitting, J. Appl. Cryst. 25, 109.
  • DE PABLO-GALÁN, L., 1978. The clay deposits of Mexico. Procceedings of the VI Int. Clay Conf. 27, 475–486.
  • FABBRI, B., GUALTIERI, S., LEONARDI, C., 2013. Modifications induced by the thermal treatment of kaolin and determination of reactivity of metakaolin. Appl. Clay Sci. 73(1), 2–10.
  • GARCIA-VALLES, M., PI, T., ALFONSO, P., CANET, C., MARTÍNEZ, S., JIMÉNEZ-FRANCO, A., TARRAGO, M., HERNÁNDEZ-CRUZ, B., 2015. Kaolin from Acoculco (Puebla, Mexico) as raw material: Mineralogical and thermal characterization. Clay Miner. 50(3), 405–416.
  • HIGO, T., SUKENAGA, S., KANEHASHI, K., SHIBATA, H., OSUGI, T., SAITO, N., NAKASHIMA, K., 2014. Effect of potassium oxide addition on viscosity of calcium aluminosilicate melts at 1 673-1 873 K. ISIJ Int. 54(9), 2039–2044.
  • HOLDAWAY, M.J., 1971. Stability of andalusite and the aluminum silicate phase diagram. Am. J. Sci. 271, 97-131.
  • H.-W. Refractory Company, 1992. Modern refractory practice. Pittsburgh: Harbison-Walker Refractories Company.
  • JOHNSON, S. M., PASK, J. A., MOYA, J. S., 1982. Influence of Impurities on High-Temperature Reactions of Kaolinite. J. Am. Ceram. Soc. 65(1), 31–35.
  • KAKALI, G., PERRAKI, T., TSIVILIS, S., BADOGIANNIS, E., 2001. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Appl. Clay Sci. 20, 73–80.
  • KIM, D-G., KOMAR, B., JUNG, I-H., 2018. Thermodynamic optimization of the K2O-Al2O3-SiO2 system. Ceram Int., 44(14), 16712-16724.
  • KIM, W. H., SOHN, I., MIN, D. J., 2010. A study on the viscous behaviour with K2O additions in the CaO-SiO2-Al2O3- MgO-K2O quinary slag system. Steel Res. Int. 81(9), 735–741.
  • KISELEVA, I. A., OROGODOVA, L. P., KRUPSKAYA, V. V., MELCHAKOVA, L. V., VIGASINA, M. F., LUSE, I., 2011. Thermodynamics of the kaolinite-group minerals. Geochemistry Int. 49(8), 793–801.
  • LECOMTE, G. L., BONNET, J. P., BLANCHART, P., 2007. A study of the influence of muscovite on the thermal transformations of kaolinite from room temperature up to 1100°C. J. Mater. Sci. 42, 8745-8752.
  • LECOMTE, G. L., BONNET, J. P., BLANCHART, P., 2011. Investigation of the sintering mechanisms of kaolin-muscovite, Appl. Clay Sci., 51, 445-451.
  • LECOMTE, G. L., PATEYRON, B., BLANCHART, P., 2004. Experimental study and simulation of a vertical section mullite-ternary eutectic (985°C) in the SiO2-Al2O3-K2O system. Mat. Res. Bulletin. 39, 1469-1978.
  • LI, J., LIN, H., LI, J., & WU, J., 2009. Effects of different potassium salts on the formation of mullite as the only crystal phase in kaolinite. J. Eur. Ceram. Soc. 29(14), 2929–2936.
  • KÜBÜK, A., GÜLABOǦLU, M. Ş., 2002. Thermal decomposition of şaphane alunite ore, Ind. Eng. Chem. Res. 41(24), 6028-6032.
  • MICHOT, A., SMITH, D. S., DEGOT, S., GAULT, C., 2008. Thermal conductivity and specific heat of kaolinite: Evolution with thermal treatment. J. Eur. Ceram. Soc. 28(14), 2639–2644.
  • MOHSEN, Q., EL-MAGHRABY, A., 2010. Characterization and assessment of Saudi clays raw material at different area. Arab. J. Chem. 3(4), 271–277.
  • MORENO-TOVAR, R., PÉREZ-MORENO, F., ARENAS-FLORES, A., ROMERO-GUERRERO, L. M., 2014. Thermal behavior, chemical, mineralogical and optical characterization of clays (kaolin) for industrial use as refractory material. Adv. Mater. Res. 976(11), 174–178.
  • PETERS, J., 1988. Determination of undrained sthear strength of low plasticity clays. Proc. Symp. Adv. Triaxial Test. Soil Rock. 460–474.
  • POTTS, P. J., 2003. Handbook of rock analysis. Science.
  • ROBIE, R.A., HEMINGWAY, B.S., FISHER, J.R., 1979. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures, U.S. Geological Survey Bulletin, reprinted.
  • SALVADOR, S., 1995, Pozzolanic properties of flash-calcined kaolinite: a comparative study with soak calcined products, Cement and Concrete Res., 25, 102-112.
  • SAXENA, S.K., CHATTERJEE, N., FEI, Y., SHEN, G., 1993. Thermodynamic data on oxides and silicates. Berlin. Springer-Verlag.
  • SCHAIRER, J. F., BOWEN, N. L. 1955. The system K2O-Al2O3-SiO2. Am. J. Sci. 253(12), 681–746.
  • SCHROEDER, P. A., PRUETT, R. J., MELEAR, N. D. 2004. Crystal-chemical changes in an oxidative weathering front in a Georgia kaolin deposit. Clays Clay Miner. 52(2), 211–220.
  • TIRONI, A., TREZZA, M.A., IRASSAR, E.F., SCIAN, A.N., 2012. Thermal treatment of kaolin: effect on the pozzolanic activity. Proc. Mater. Sci. 1, 343-350.
  • WU, G. 2015. Modelling and Experimental Validation of the Viscosity of Liquid Phases in Oxide Systems Relevant to Fuel Slags. Universitatsbibliothek der RWTH Aachen.
  • YAMUNA, A., DEVANARAYANAN, S., LALITHAMBIKA, M., 2002. Phase-pure mullite from Kaolinite. J. Am. Ceram. Soc. 85(6), 1409–1413.
  • ZEGEYE, A., YAHAYA, S., FIALIPS, C. I., WHITE, M. L., GRAY, N. D., MANNING, D. A. C., 2013. Refinement of industrial kaolin by microbial removal of iron-bearing impurities. Appl. Clay Sci. 86, 47–53.
  • ZHANG, G. H., CHOU, K. C., 2012. Measuring and modeling viscosity of CaO-Al2O3-SiO2(-K2O) melt. Metall. Mater. Trans. B: Process Metall. Mater. Process. Sci. 43(4), 841–848
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-102f925e-0ac0-4b27-85c1-a3efc2113e00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.