PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Personal identification based on brain networks of EEG signals

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Personal identification is particularly important in information security. There are numerous advantages of using electroencephalogram (EEG) signals for personal identification, such as uniqueness and anti-deceptiveness. Currently, many researchers focus on single-dataset personal identification, instead of the cross-dataset. In this paper, we propose a method for cross-dataset personal identification based on a brain network of EEG signals. First, brain functional networks are constructed from the phase synchronization values between EEG channels. Then, some attributes of the brain networks including the degree of a node, the clustering coefficient and global efficiency are computed to form a new feature vector. Lastly, we utilize linear discriminant analysis (LDA) to classify the extracted features for personal identification. The performance of the method is quantitatively evaluated on four datasets involving different cognitive tasks: (i) a four-class motor imagery task dataset in BCI Competition IV (2008), (ii) a two-class motor imagery dataset in the BNCI Horizon 2020 project, (iii) a neuromarketing dataset recorded by our laboratory, (iv) a fatigue driving dataset recorded by our laboratory. Empirical results of this paper show that the average identification accuracy of each data set was higher than 0.95 and the best one achieved was 0.99, indicating a promising application in personal identification.
Rocznik
Strony
745--757
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • College of Computer Science, Hangzhou Dianzi University, Hangzhou, 310018 China
autor
  • College of Computer Science, Hangzhou Dianzi University, Hangzhou, 310018 China
autor
  • College of Computer Science, Hangzhou Dianzi University, Hangzhou, 310018 China
autor
  • School of Information Science and Engineering, Xiamen University, Xiamen, 361005 China; Laboratory for Advanced Brain Signal Processing, BSI, RIKEN, Wako, Saitama, 351-0198 Japan
autor
  • College of Computer Science, Hangzhou Dianzi University, Hangzhou, 310018 China
Bibliografia
  • [1] Armstrong, B.C., Ruiz-Blondet, M.V., Khalifian, N., Kurtz, K.J., Jin, Z. and Laszlo, S. (2015). Brainprint: Assessing the uniqueness, collectability, and permanence of a novel method for ERP biometrics, Neurocomputing 166(2015): 59–67.
  • [2] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. and Hwang, D.U. (2006). Complex networks: Structure and dynamics, Physics Reports 424(4C5): 175–308.
  • [3] Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A. and Pfurtscheller, G. (2008). BCI Competition 2008—Graz data set A, Graz University of Technology, Graz, http://www.bbci.de/competition/iv/desc_2a.pdf.
  • [4] Bullmore, E. and Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems, Nature Reviews Neuroscience 10(3): 186–198.
  • [5] Chavez, M., Valencia, M., Latora, V. and Martinerie, J. (2010). Complex networks: New trends for the analysis of brain connectivity, International Journal of Bifurcation & Chaos 20(6): 1677–1686.
  • [6] Das, K., Zhang, S., Giesbrecht, B. and Eckstein, M.P. (2009). Using rapid visually evoked EEG activity for person identification, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, pp. 2490–2493.
  • [7] Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence, Trends in Cognitive Sciences 9(10): 474.
  • [8] Hebb, D.O. (2013). The Organization of Behavior: A Neuropsychological Theory, John Wiley/Chapman & Hall, Hoboken, NJ.
  • [9] Hema, C.R., Paulraj, M.P. and Kaur, H. (2009). Brain signatures: A modality for biometric authentication, International Conference on Electronic Design, Penang, Malaysia, pp. 1–4.
  • [10] Huang, X., Altahat, S., Tran, D. and Sharma, D. (2012). Human identification with electroencephalogram (EEG) signal processing, International Symposium on Communications and Information Technologies, Gold Coast, Australia, pp. 1021–1026.
  • [11] Jain, A.K., Bolle, R. and Pankanti, S. (2005). Biometrics: Personal Identification in Networked Society, Springer-Verlag New York, New York, NY.
  • [12] Jamal, W., Das, S., Maharatna, K., Pan, I. and Kuyucu, D. (2015). Brain connectivity analysis from EEG signals using stable phase-synchronized states during face perception tasks, Physica A: Statistical Mechanics and Its Applications 434(2015): 273–295.
  • [13] Kim, T.K., Kim, H., Hwang, W. and Kee, S.C. (2003). Face description based on decomposition and combining of a facial space with LDA, International Conference on Image Processing, ICIP 2003, Barcelona, Spain, pp. 877–880.
  • [14] Kong, W., Lin, W., Babiloni, F., Hu, S. and Borghini, G. (2015). Investigating driver fatigue versus alertness using the Granger causality network, Sensors 15(8): 19181–19198.
  • [15] Kong, W., Zhao, X., Hu, S., Vecchiato, G. and Babiloni, F. (2013). Electronic evaluation for video commercials by impression index, Cognitive Neurodynamics 7(6): 531–535.
  • [16] Kong, W., Zhou, Z., Jiang, B., Babiloni, F. and Borghini, G. (2017). Assessment of driving fatigue based on intra/inter-region phase synchronization, Neurocomputing 219(2017): 474–482.
  • [17] Latora, V. and Marchiori, M. (2001). Efficient behavior of small-world networks, Physical Review Letters 87(19): 198701.
  • [18] Le, V.Q.M., Foucher, J., Lachaux, J., Rodriguez, E., Lutz, A., Martinerie, J. and Varela, F.J. (2001). Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony, Journal of Neuroscience Methods 111(2): 83–98.
  • [19] Lei, G., Yao, W., Hongli, Y., Ning, Y. and Ying, L. (2014). Study of brain functional network based on sample entropy of EEG under magnetic stimulation at PC6 acupoint, Biomedical Materials and Engineering 24(1): 1063–9.
  • [20] Ling, W., Li, Y., Yang, X., Xue, Q. and Wang, Y. (2015). Altered characteristic of brain networks in mild cognitive impairment during a selective attention task: An EEG study, International Journal of Psychophysiology 98(1): 8–16.
  • [21] Maiorana, E., Rocca, D.L. and Campisi, P. (2015). Eigenbrains and eigentensorbrains: Parsimonious bases for EEG biometrics, Neurocomputing 171(2016): 638–648.
  • [22] McFarland, D.J., McCane, L.M., David, S.V. and Wolpaw, J.R. (1997). Spatial filter selection for EEG-based communication, Electroencephalography & Clinical Neurophysiology 103(3): 386–394.
  • [23] Nguyen, P., Tran, D., Huang, X. and Sharma, D. (2012). A proposed feature extraction method for EEG-based person identification, Proceedings of the 2012 International Conference on Artificial Intelligence, Las Vegas, NV, USA, pp. 1–6.
  • [24] Onnela, J.P., Saramäki, J., Kertész, J. and Kaski, K. (2005). Intensity and coherence of motifs in weighted complex networks, Physical Review E 71(6 Pt 2): 065103.
  • [25] Paranjape, R.B., Mahovsky, J., Benedicenti, L. and Koles, Z. (2001). The electroencephalogram as a biometric, Canadian Conference on Electrical and Computer Engineering, Haran Karmaker, Toronto, Vol. 2, pp. 1363–1366.
  • [26] Park, H.J. and Friston, K. (2013). Structural and functional brain networks: from connections to cognition, Science 342(6158): 1238411.
  • [27] Peng, Y. and Lu, B.-L. (2017). Discriminative extreme learning machine with supervised sparsity preserving for image classification, Neurocomputing 261(2017): 242–252.
  • [28] Pfurtscheller, G. and Neuper, C. (2001). Motor imagery and direct brain-computer communication, Proceedings of the IEEE 89(7): 1123–1134.
  • [29] Poulos, M., Rangoussi, M. and Alexandris, N. (1999). Neural network based person identification using EEG features, IEEE International Conference on Acoustics, Speech, and Signal Processing, Phoenix, AZ, USA, pp. 1117–1120.
  • [30] Pujol, F.A., Mora, H. and Girona-Selva, J.A. (2016). A connectionist computational method for face recognition, International Journal of Applied Mathematics and Computer Science 26(2): 451–465, DOI: 10.1515/amcs-2016-0032.
  • [31] Rosenblum, M.G., Pikovsky, A.S. and Kurths, J. (1996). Phase synchronization of chaotic oscillators, Physical Review Letters 76(11): 1804.
  • [32] Rosenblum, M.G., Pikovsky, A.S. and Kurths, J. (2012). Synchronization approach to analysis of biological systems, Fluctuation & Noise Letters 04(1): L53–L62.
  • [33] Rubinov, M. and Sporns, O. (2009). Complex network measures of brain connectivity: Uses and interpretations, Neuroimage 52(3): 1059–1069.
  • [34] Sakkalis, V., Oikonomou, T., Tsiaras, V. and Tollis, I. (2015). Graph-theoretic indices of evaluating brain network synchronization: Application in an alcoholism paradigm, Neuromethods 91(2015): 159–169.
  • [35] Saramäki, J., Kivelä, M., Onnela, J.-P., Kaski, K. and Kertész, J. (2007). Generalizations of the clustering coefficient to weighted complex networks, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 75(2 Pt 2): 027105.
  • [36] Stam, C.J. (2009). From Synchronisation to Networks: Assessment of Functional Connectivity in the Brain, Springer New York, New York, NY.
  • [37] Steyrl, D., Scherer, R., Faller, J. and Müller-Putz, G.R. (2016). Random forests in non-invasive sensorimotor rhythm brain-computer interfaces: A practical and convenient non-linear classifier, Biomedical Engineering/Biomedizinische Technik 61(1): 77–86.
  • [38] Su, F., Xia, L., Cai, A. and Ma, J. (2010). Evaluation of recording factors in EEG-based personal identification: A vital step in real implementations, IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, pp. 3861–3866.
  • [39] Vukašinović, V., Šilc, J. and Škrekovski, R. (2014). Modeling acquaintance networks based on balance theory, International Journal of Applied Mathematics and Computer Science 24(3): 683–696, DOI: 10.2478/amcs-2014-0050.
  • [40] Ye, J., Janardan, R. and Li, Q. (2004). Two-dimensional linear discriminant analysis, Photogrammetric Engineering & Remote Sensing 5(6): 1431–1441.
  • [41] Yeom, S.K., Suk, H.I. and Lee, S.W. (2013). Person authentication from neural activity of face-specific visual self-representation, Pattern Recognition 46(4): 1159–1169.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-102d6fa5-4a88-488f-8a02-7aaba114b8fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.