PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polarization phenomenon in underground pipeline generated by stochastic stray currents from D.C. traction

Treść / Zawartość
Warianty tytułu
Konferencja
Computer Applications in Electrical Engineering (10-11.04.2017 ; Poznań, Polska)
Języki publikacji
EN
Abstrakty
EN
D.C electrified traction systems are a potential source of stray currents. The important problem, technically, is to evaluate the harmful effects (electrolytic corrosion) that an electrified railway has on nearby earth–return circuits (e.g. pipelines). This phenomenon is stochastic and may aggravate electrochemical corrosion in different places depending on the position of the vehicle, the load current, soil parameters, etc. The electric circuit approach, based on the complete field method of solution of the transmission–line problem (the earth–return circuit theory), to model stray currents interference on extended structures is presented. The electrode kinetics (polarization phenomenon) is taken into account in the model developed. Random algorithm allows to explore the phenomenon of polarization for different cases, which allows for generalization of the conclusions regarding the risk of corrosion in the studied systems.
Rocznik
Tom
Strony
111--122
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • Poznan University of Technology
  • Poznan University of Technology
  • Poznan University of Technology
Bibliografia
  • [1] Bortels L., A. Dorochenko, B. Van den Bossche, G. Weyns, J. Deconinck. 2007. “Three–Dimensional Boundary Element Method and Finite Element Method Simulations Applied to Stray Current Interference Problems, A Unique Coupling Mechanism That Takes the Best of Both Methods”. Corrosion 63 (6): 561–576.
  • [2] Brichau F., J. Deconinck. 1994. “A Numerical Model for Cathodic Protection of Buried Pipes”. Corrosion 50 (1): 39–49.
  • [3] Charalambous C.A., I. Cotton, P. Aylott. 2008. “A Simulation Tool to Predict the Impact of Soil Topologies on Coupling Between a Light Rail System and Buried Third–Party Infrastructure”, IEEE Trans. Veh. Technol 57 (3): 1404–1416.
  • [4] Czarnywojtek P., Machczyński W. 2003. “Computer simulation of responses of earth–return circuits to the a.c. and d.c. external excitation”, European Trans. on Electrical Power, ETEP 13 (3): 173–184.
  • [5] Hill R.J., S. Brillante, P.J. Leonard. 1999. “Railway track transmission line parameters from finite element field modeling: Shunt admittance”. Proc. IEE Elect. Power Applicat.146 (6): 647–660.
  • [6] Hill R.J., S. Brillante, P.J. Leonard. 2000. “Railway track transmission line parameters from finite element field modeling: Series impedance”, Proc. IEE Elect. Power Applicat. 147 (3): 227–238.
  • [7] Lucca G. 2015. “Estimating stray currents interference from DC traction lines on buried pipelines by means a Monte Carlo algorithm”. Electrical Engineering 97 (4): 277–286.
  • [8] Machczyński W., Czarnywojtek P. 2005. “Computer simulation of a protection of underground conductors against stray currents”. 16th International Corrosion Congress 21 (3): 1–8.
  • [9] Machczyński W. 2002. “Simulation model for drainage protection of earth–return circuits laid in stray currents area”. Electrical Engineering 84 (3): 165–172.
  • [10] Machczyński W. 1982. “Currents and potentials in earth return circuits exposed to alternating current electric railways”. Proc. IEEE, Part B 129 (5): 279–288.
  • [11] Mariscotti A., P. Pozzobon. 2004. “Determination of the electrical parameters of railway traction lines: Calculation, measurements and reference data”. IEEE Trans. on Power Delivery 19 (40): 1538–1546.
  • [12] Metwally I.A., H.M. Al–Mandhari, Z. Nadir, A. Gastli. 2007. “Boundary element simulation of DC stray currents in oil industry due to cathodic protection interference”. European Trans. on Electrical Power 17: 486–499.
  • [13] Ogunsola A., A. Mariscotti. 2013. “Electromagnetic Compatibility in Railways, Analysis and management”. Springer–Verlag.
  • [14] Ogunsola A., A. Mariscotti, L. Sandrolini. 2012. “Estimation of stray current from a dc–electrified railway and impressed potential on a buried pipe”. IEEE Trans. on Power Delivery 27 (4): 2238–2246.
  • [15] Sunde E.D. 1968. Earth conduction effects in transmission system. New York: Dover.
  • [16] Machczyński W., Budnik K., Szymenderski J. 2016. „Assessment of d.c traction stray currents effects on nearby pipelines”. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35, iss 4: 1468–1477.
  • [17] Machczyński W., Budnik K., Szymenderski J. 2016. „Potential of the electric flow field produced in the earth by stray currents from d.c. traction of complex geometry”, Poznan University of Technology Academic Journals. Electrical Engineering, Issue 85: 29–40.
  • [18] Machczyński W., Szymenderski J. 2016. “Stochastic stray currents effects on earth return circuits (underground pipelines)”, Ochrona przed Korozją, tom: 59, nr 8: 273–279.
  • [19] Baeckmann, W.v., Schwenk, W. (1999), Handbuch des kathodischen Korrosionsschutzes, Wiley–VCH, Weinheim.
  • [20] NACE SP0169–2013 (2012), Control of External Corrosion on Underground or Submerged Metallic Piping Systems, NACE Standards, Houston, Texas.
  • [21] Fontana, M.G., Greene, N.D. (1978), Corrosion engineering, McGraw–Hill, Inc., New York.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-101aa7cd-5a28-4cc1-8932-831e2292ec11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.