PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A New Star-Like SurfaceTexture for Enhanced Hydrodynamic Lubrication Performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a numerical modelling and optimization of a new ‘star-like’ geometric texture shape with an aim to improve tribological performance. Initial studies showed that the triangle effect is the most dominant in reducing the friction. Motivated with this, a ‘star-like’ texture shape consisting of a series of triangular spikes around the centre of the texture is proposed. It is hypothesised that by increasing the triangular effect on a texture shape, the converging micro-wedge effect is expected to increase, hence increasing the film pressure and reducing the friction. Using the well-known Reynolds boundary conditions, numerical modelling of surface texturing is implemented via finite difference method. Simulation results showed that the number of apex points of the new ‘star-like’ texture has a significant effect on the film pressure and the friction coefficient. A 6-pointed texture at a texture density of 0.4 is shown to be the optimum shape. The new optimum star-like texture reduces the friction coefficient by 80%, 64.39%, 19.32% and 16.14%, as compared to ellipse, chevron, triangle and circle, respectively. This indicates the potential benefit of the proposed new shape in further enhancing the hydrodynamic lubrication performance of slider bearing contacts.
Twórcy
autor
  • School of Engineering, University of South Australia, Mawson Lakes, Sa 5095, Australia
autor
  • School of Engineering, University of South Australia, Mawson Lakes, Sa 5095, Australia
autor
  • Department of Mechatronics Engineering, Kongu Engineering College, Erode, Tamilnadu, India
Bibliografia
  • [1] I. Etsion, Y. Kligerman, G. Halperin, Tribol. Trans. 42, 511-516 (1999).
  • [2] F. Meng, R. Zhou, T. Davis, J. Cao, Q.J. Wang, D. Hua, J. Liu, Appl. Surf. Sci. 256, 2863-2875 (2010).
  • [3] D. Yan, N. Qu, H. Li, X. Wang, Tribol. Trans. 53, 703-712 (2010).
  • [4] R. Rahmani, A. Shirvani, H. Shirvani, Applications and Future Trends. Woodhead Publishing, Cambridge, 470-517 (2010).
  • [5] H. Yu, H. Deng, W. Huang, X. Wang, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 225, 693-703 (2011).
  • [6] M. Qiu, B. R. Minson, B. Raeymaekers, Tribol. Int. 67, 278-288 (2013).
  • [7] S. Yuan, W. Huang, X. Wang, Tribol. Int. 44, 9, 1047-1054 (2011).
  • [8] B. Kim, Y. H. Chae, H. S. Choi, Tribol. Int. 70, 128-135 (2014).
  • [9] M. M. Cho, H. J. Choi, Tribol. Lett. 56, 409-422 (2014).
  • [10] A. Chyr, M. Qiu, J.W. Speltz, R.L. Jacobsen, A.P. Sanders, B. Raeymaekers, Wear 315, 51-57 (2014).
  • [11] C. Shen, M. M. Khonsari, Tribol. Int. 82, 1-11 (2014).
  • [12] Y. L. Zhang, X. G. Zhang, G. Matsoukas, Biosurface Biotribology 1, 270-277 (2015).
  • [13] I. Syed, M. Sarangi, 16th National Conference on Machines and Mechanisms (iNaCoMM-2013), India, 850-856 (2013).
  • [14] S. Kango, D. Singh, P. K. Sharma, Meccanica 47, 469-482 (2011).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10165d85-516d-4217-8d67-0fdb90893f52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.