PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A unified 2D medical image segmentation network (SegmentNet) through distance-awareness and local feature extraction

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In addressing the challenges of medical image segmentation, particularly the elusiveness of global context and limitations in leveraging both global and local context simultaneously, we present SegmentNet as a solution. Our approach involves a step-by-step implementation within the reconstructed UNet architecture, tailored to enhance segmentation performance across diverse medical imaging modalities. The first step involves the integration of multi-focus Distance-Aware Mechanisms (DaMs) within skip connections and between successive layers of the encoder in SegmentNet. This strategic placement focuses on extracting unrelated features, ensuring comprehensive consideration of global context. Following this, Local Feature Extractor Blocks (LFEBs) are introduced at the base of the network. Equipped with depthwise separable operations, standard convolutions, smoothed ReLU, and normalization transform, LFEBs target the capture of specific local image features ensuring that features overlooked by DaMs are appropriately considered. These extracted features are then passed on to the decoder portion of SegmentNet, facilitating enhanced prediction of masks thus, optimizing segmentation performance. Evaluated across diverse datasets, including Breast Ultrasound Images (BUSI), Chest X-ray images (CXRI), and Diabetic Retinal Fundus Images (DRFI), SegmentNet excels. The segmentation evaluation results in terms of accuracy, Jaccard, and specificity are respectively recorded for BUSI, CXRI, and DRFI to be (93.88 %, 98.96 %, and 99.17 %), (99.28 %, 99.58 %, and 99.83 %), and (95.77 %, 95.95 %, and 99.94 %). Thus, showing that the incorporation of DaMs and LFEBs in SegmentNet emerges as a robust solution demonstrating precise 2D medical image segmentation across various modalities. This advancement holds significant potential for diverse clinical applications, promising improved patient care.
Twórcy
  • Network and Data Security Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
autor
  • Network and Data Security Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
  • Sichuan Engineering Technology Research Center for Industrial Internet Intelligent Monitoring and Application, Chengdu University of Technology, Sichuan, China
  • School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
  • Network and Data Security Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
  • Department of Artificial Intelligence, College of Software & Convergence Technology, Daeyang AI Center, Sejong University, Seoul, Republic of Korea
  • Sichuan Engineering Technology Research Center for Industrial Internet Intelligent Monitoring and Application, Chengdu University of Technology, Sichuan, China
Bibliografia
  • [1] Ejiyi CJ, Qin Z, Monday H, Ejiyi MB, Ukwuoma C, Ejiyi TU, et al. Breast cancer diagnosis and management guided by data augmentation, utilizing an integrated framework of SHAP and random augmentation. Biofactors 2023:1-21. https://doi. org/10.1002/biof.1995.
  • [2] Monday HN, Li J, Nneji GU, Nahar S, Hossin MA, Jackson J, et al. COVID-19 diagnosis from chest X-ray images using a robust multi-resolution analysis siamese neural network with super-resolution convolutional neural network. Diagnostics 2022:12. https://doi.org/10.3390/DIAGNOSTICS12030741.
  • [3] Liu W, Luo J, Yang Y, Wang W, Deng J, Yu L. Automatic lung segmentation in chest X-ray images using improved U-Net. Sci Reports 2022.1-10.;2022(121):12. https://doi.org/10.1038/s41598-022-12743-y.
  • [4] Singh VK, Abdel-Nasser M, Akram F, Rashwan HA, Sarker MMK, Pandey N, et al. Breast tumor segmentation in ultrasound images using contextual-information-aware deep adversarial learning framework. Expert Syst Appl 2020;162:113870. https://doi.org/10.1016/J.ESWA.2020.113870.
  • [5] Ejiyi CJ, Qin Z, Adetunji SA, Happy MN, Nneji GU, Ukwuoma CC, et al. Comparative analysis of building insurance prediction using some machine learning algorithms. Int J Interact Multimed Artif Intell 2022;7:75-85. https://doi. org/10.9781/ijimai.2022.02.005.
  • [6] Guleria K, Sharma S, Kumar S, Tiwari S. Early prediction of hypothyroidism and multiclass classification using predictive machine learning and deep learning. Meas Sensors 2022;24:100482. https://doi.org/10.1016/J.MEASEN.2022.100482.
  • [7] Agrawal T, Choudhary P. Segmentation and classification on chest radiography: a systematic survey. Vis Comput 2021 393 2022;39:875-913. DOI: 10.1007/S00371-021-02352-7.
  • [8] Pavithra KC, Kumar P, Geetha M, Bhandary SV. Computer aided diagnosis of diabetic macular edema in retinal fundus and OCT images: A review. Biocybern Biomed Eng 2023;43:157-88. https://doi.org/10.1016/J.BBE.2022.12.005.
  • [9] Nneji GU, Cai J, Deng J, Monday HN, Hossin MA, Nahar S. Identification of diabetic retinopathy using weighted fusion deep learning based on dual-channel fundus scans. Diagnostics 2022. https://doi.org/10.3390/diagnostics12020540.
  • [10] Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. Proc. IEEE Int. Conf. Comput. Vis., 2015, p. 1520-8. DOI: 10.1109/ICCV.2015.178.
  • [11] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation BT - medical image computing and computer-assisted. Med Image Comput Comput Interv 2015:234-41. https://doi.org/10.1007/978-3-319- 24574-4_28.
  • [12] Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support 4th Int Work DLMIA 2018, 8th Int Work ML-CDS 2018, Held Conjunction with MICCAI 2018, Granada, Spain, S. 2018;11045: 3-11. DOI: 10.1007/978-3-030-00889-5_1.
  • [13] Huang H, Lin L, Tong R, Hu H, Zhang Q, Iwamoto Y, et al. UNet 3+: A full-scale connected UNet for medical image segmentation. ICASSP, IEEE Int Conf Acoust Speech Signal Process - Proc 2020:1055-9. https://doi.org/10.1109/ICASSP40776.2020.9053405.
  • [14] John D, Zhang C. An attention-based U-Net for detecting deforestation within satellite sensor imagery. Int J Appl Earth Obs Geoinf 2022;107:102685. https://doi.org/10.1016/J.JAG.2022.102685.
  • [15] Valanarasu JMJ, Patel VM. UNeXt: MLP-Based Rapid Medical Image Segmentation Network. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2022;13435 LNCS:23-33. DOI: 10.1007/978-3-031-16443-9_3/TABLES/3.
  • [16] Trockman A, Kolter JZ. Patches Are All You Need? ArXivOrg 2022;Computer V. DOI: 10.48550/arxiv.2201.09792.
  • [17] Valanarasu JMJ, Oza P, Hacihaliloglu I, Patel VM. Medical Transformer: Gated Axial-Attention for Medical Image Segmentation. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2021;12901 LNCS:36-46. DOI: 10.1007/978-3-030-87193-2_4/FIGURES/3.
  • [18] Wang W, Chen C, Ding M, Yu H, Zha S, Li J. TransBTS: Multimodal Brain Tumor Segmentation Using Transformer. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2021;12901 LNCS:109-19. DOI: 10.1007/978-3-030-87193-2_11/TABLES/5.
  • [19] Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, et al. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. ArXiv 2021. DOI: 10.48550/arxiv.2102.04306.
  • [20] Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ArXiv 2020. DOI: 10.48550/arxiv.2010.11929.
  • [21] Alshmrani GMM, Ni Q, Jiang R, Pervaiz H, Elshennawy NM. A deep learning architecture for multi-class lung diseases classification using chest X-ray (CXR) images. Alexandria Eng J 2023. https://doi.org/10.1016/j.aej.2022.10.053.
  • [22] Jin S, Yu S, Peng J, Wang H, Zhao Y. A novel medical image segmentation approach by using multi-branch segmentation network based on local and global information synchronous learning. Sci Rep 2023:13. https://doi.org/10.1038/s41598-023-33357-y.
  • [23] Xu L, Wang L, Li Y, Du A. Big Model and Small Model : Remote modeling and local information extraction module for medical image segmentation. Appl Soft Comput 2023;136:110128. https://doi.org/10.1016/J.ASOC.2023.110128.
  • [24] Talaat M, Xi J, Tan K, Si XA, Xi J. Convolutional neural network classification of exhaled aerosol images for diagnosis of obstructive respiratory diseases. J Nanotheranostics 2023;4:228-47. https://doi.org/10.3390/jnt4030011.
  • [25] Ejiyi CJ, Qin Z, Nnani AO, Deng F, Ejiyi TU, Ejiyi MB, et al. ResfEANet: ResNet-fused external attention network for tuberculosis diagnosis using chest X-ray images. Comput Methods Programs Biomed Updat 2024;5:100133. https://doi.org/10.1016/J.CMPBUP.2023.100133.
  • [26] Zhang J, Qin Q, Ye Q, Ruan T. ST-Unet: Swin transformer boosted U-Net with cross-layer feature enhancement for medical image segmentation. Comput Biol Med 2023;153:106516. https://doi.org/10.1016/J.COMPBIOMED.2022.106516.
  • [27] Melekoodappattu JG, Dhas AS, Kandathil BK, Adarsh KS. Breast cancer detection in mammogram: Combining modified CNN and texture feature based approach. J Ambient Intell Humaniz Comput 2023;14:11397-406. https://doi.org/10.1007/s12652-022-03713-3.
  • [28] Sahu A, Das PK, Meher S. High accuracy hybrid CNN classifiers for breast cancer detection using mammogram and ultrasound datasets. Biomed Signal Process Control 2023;80:104292. https://doi.org/10.1016/j.bspc.2022.104292.
  • [29] Kausar T, Wang M, Idrees M, Lu Y. {HWDCNN}: Multi-class recognition in breast histopathology with Haar wavelet decomposed image based convolution neural network. Biocybern Biomed Eng 2019;39:967-82. https://doi.org/10.1016/j.bbe.2019.09.003.
  • [30] Tian C, Fang T, Fan Y, Wu W. Multi-path convolutional neural network in fundus segmentation of blood vessels. Biocybern Biomed Eng 2020;40:583-95. https://doi.org/10.1016/j.bbe.2020.01.011.
  • [31] Nagasato D, Sogawa T, Tanabe M, Tabuchi H, Numa S, Oishi A, et al. Estimation of visual function using deep learning from ultra-widefield fundus images of eyes with retinitis pigmentosa. JAMA Ophthalmol 2023;141:305-13. https://doi.org/10.1001/jamaophthalmol.2022.6393.
  • [32] Asia AO, Zhu CZ, Althubiti SA, Al-Alimi D, Xiao YL, Ouyang PB, et al. Detection of diabetic retinopathy in retinal fundus images using CNN classification models. Electron 2022;11:2740. https://doi.org/10.3390/electronics11172740.
  • [33] Toğaçar M, Ergen B, Tümen V. Use of dominant activations obtained by processing OCT images with the CNNs and slime mold method in retinal disease detection. Biocybern Biomed Eng 2022;42:646-66. https://doi.org/10.1016/j.bbe.2022.05.005.
  • [34] Xu Y, Fan Y. Dual-channel asymmetric convolutional neural network for an efficient retinal blood vessel segmentation in eye fundus images. Biocybern Biomed Eng 2022;42:695-706. https://doi.org/10.1016/J.BBE.2022.05.003.
  • [35] Munusamy H, Karthikeyan JM, Shriram G, Thanga Revathi S, Aravindkumar S. FractalCovNet architecture for COVID-19 Chest X-ray image classification and CT-scan image segmentation. Biocybern Biomed Eng 2021;41:1025-38. https://doi.org/10.1016/J.BBE.2021.06.011.
  • [36] Jiang J, Peng Y, Hou Q, Wang J. MDCF_Net: A multi-dimensional hybrid network for liver and tumor segmentation from CT. Biocybern Biomed Eng 2023;43: 494-506. https://doi.org/10.1016/J.BBE.2023.04.004.
  • [37] Lin G, Chen M, Tan M, Chen L, Chen J. A dual-stage transformer and MLP-based network for breast ultrasound image segmentation. Biocybern Biomed Eng 2023; 43:656-71. https://doi.org/10.1016/J.BBE.2023.09.001.
  • [38] Chen Y, Ma B, Xia Y. $$\alpha $$ -UNet++: A Data-Driven Neural Network Architecture for Medical Image Segmentation. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2020;12444 LNCS:3-12. DOI: 10.1007/978-3-030-60548-3_1/TABLES/1.
  • [39] Kalinin AA, Iglovikov VI, Rakhlin A, Shvets AA. Medical image segmentation using deep neural networks with pre-trained encoders. Adv Intell Syst Comput 2020; 1098:39-52. https://doi.org/10.1007/978-981-15-1816-4_3/TABLES/2.
  • [40] Ibtehaz N, Rahman MS. MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw 2020;121:74-87. https://doi.org/10.1016/J.NEUNET.2019.08.025.
  • [41] Oktay O, Schlemper J, Folgoc L Le, Lee M, Heinrich M, Misawa K, et al. Attention U-Net: Learning Where to Look for the Pancreas. ArXiv 2018. DOI: 10.48550/arXiv.1804.03999.
  • [42] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, IEEE Comput Soc 2018:7132-41. https://doi.org/10.1109/CVPR.2018.00745.
  • [43] Wu H, Liu J, Wang W, Wen Z, Qin J. Region-aware Global Context Modeling for Automatic Nerve Segmentation from Ultrasound Images. 35th AAAI Conf Artif Intell AAAI 2021 2021;35:2907-15. DOI: 10.1609/aaai.v35i4.16397.
  • [44] Chen G, Dai Y, Zhang J. C-Net: Cascaded convolutional neural network with global guidance and refinement residuals for breast ultrasound images segmentation. Comput Methods Programs Biomed 2022;225:107086. https://doi.org/10.1016/J.CMPB.2022.107086.
  • [45] Jiang T, Xing W, Yu M, Ta D. A hybrid enhanced attention transformer network for medical ultrasound image segmentation. Biomed Signal Process Control 2023;86: 105329. https://doi.org/10.1016/J.BSPC.2023.105329.
  • [46] Yang L, Zhai C, Liu Y, Yu H. CFHA-Net: A polyp segmentation method with cross-scale fusion strategy and hybrid attention. Comput Biol Med 2023;164:107301. https://doi.org/10.1016/J.COMPBIOMED.2023.107301.
  • [47] Huang X, Wang Q, Chen J, Chen L, Chen Z. Effective hybrid attention network based on pseudo-color enhancement in ultrasound image segmentation. Image Vis Comput 2023;137:104742. https://doi.org/10.1016/j.imavis.2023.104742.
  • [48] Chen GP, Zhao Y, Dai Y, Zhang JX, Yin XT, Cui L, et al. Asymmetric U-shaped network with hybrid attention mechanism for kidney ultrasound images segmentation. Expert Syst Appl 2023;212:118847. https://doi.org/10.1016/J.ESWA.2022.118847.
  • [49] Liu H, Yao M, Xiao X, Cui H. A hybrid attention semantic segmentation network for unstructured terrain on Mars. Acta Astronaut 2023;204:492-9. https://doi.org/10.1016/J.ACTAASTRO.2022.08.002.
  • [50] Al-Huda Z, Peng B, Algburi RNA, Al-antari MA, AL-Jarazi R, Zhai D. A hybrid deep learning pavement crack semantic segmentation. Eng Appl Artif Intell 2023;122: 106142. DOI: 10.1016/J.ENGAPPAI.2023.106142.
  • [51] Byra M, Jarosik P, Szubert A, Galperin M, Ojeda-Fournier H, Olson L, et al. Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network. Biomed Signal Process Control 2020;61:102027. https://doi.org/10.1016/J.BSPC.2020.102027.
  • [52] Zhuang Z, Li N, Raj ANJ, Mahesh VGV, Qiu S. An RDAU-NET model for lesion segmentation in breast ultrasound images. PLoS One 2019;14:e0221535.
  • [53] Alkhaleefah M, Tan TH, Chang CH, Wang TC, Ma SC, Chang L, et al. Connected- SegNets: A deep learning model for breast tumor segmentation from X-ray images. Cancers (Basel) 2022;14:4030. https://doi.org/10.3390/CANCERS14164030.
  • [54] Ning Z, Zhong S, Feng Q, Chen W, Zhang Y. SMU-Net: Saliency-guided morphology-aware U-Net for breast lesion segmentation in ultrasound image. IEEE Trans Med Imaging 2022;41:476-90. https://doi.org/10.1109/TMI.2021.3116087.
  • [55] Zimmer VA, Gomez A, Skelton E, Wright R, Wheeler G, Deng S, et al. Placenta segmentation in ultrasound imaging: Addressing sources of uncertainty and limited field-of-view. Med Image Anal 2023;83:102639. https://doi.org/10.1016/J.MEDIA.2022.102639.
  • [56] Yang L, Wang H, Zeng Q, Liu Y, Bian G. A hybrid deep segmentation network for fundus vessels via deep-learning framework. Neurocomputing 2021;448:168-78. https://doi.org/10.1016/J.NEUCOM.2021.03.085.
  • [57] Liu R, Wang T, Zhang X, Zhou X. DA-Res2UNet: Explainable blood vessel segmentation from fundus images. Alexandria Eng J 2023;68:539-49. https://doi.org/10.1016/J.AEJ.2023.01.049.
  • [58] Kuiper RJA, Colaris JW, Stockmans F, van Es EM, Viergever MA, Seevinck PR, et al. Impact of bone and cartilage segmentation from CT and MRI on both bone forearm osteotomy planning. Int J Comput Assist Radiol Surg 2023;18:2307-18. https://doi.org/10.1007/s11548-023-02929-8.
  • [59] Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images. Data Br 2020;28:104863. https://doi.org/10.1016/J.DIB.2019.104863.
  • [60] Chowdhury MEH, Rahman T, Khandakar A, Mazhar R, Kadir MA, Bin MZ, et al. Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 2020;8: 132665-76. https://doi.org/10.1109/ACCESS.2020.3010287.
  • [61] Rahman T, Khandakar A, Qiblawey Y, Tahir A, Kiranyaz S, Abul Kashem S, et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput Biol Med 2021;132:104319. https://doi.org/10.1016/J.COMPBIOMED.2021.104319.
  • [62] COVID-19 Radiography Database | Kaggle n.d. https://www.kaggle.com/datasets /tawsifurrahman/covid19-radiography-database (accessed March 15, 2023).
  • [63] Budai A, Odstrcilik J, Kolar R, Hornegger J, Jan J, Kubena T, et al. A public database for the evaluation of fundus image segmentation algorithms. Invest Ophthalmol Vis Sci 2011;52:1345.
  • [64] Ejiyi CJ, Orakwue CO, Qin Z, Diokpo CN, Nnani AO, Ejiyi MB, et al. Towards the conservation of endangered mammals using single-stage deep neural network. Direct Res J Agric Food Sci 2022;10:254-61. https://doi.org/10.26765/DRJAFS72902107.
  • [65] Ejiyi CJ, Bamisile O, Ugochi N, Zhen Q, Ilakoze N, Ijeoma C. Systematic Advancement of Yolo Object Detector For Real-Time Detection of Objects. 2021 18th Int. Comput. Conf. Wavelet Act. Media Technol. Inf. Process., IEEE; 2021, p. 279-84. DOI: 10.1109/ICCWAMTIP53232.2021.9674163.
  • [66] Li R, Liu W, Yang L, Sun S, Hu W, Zhang F, et al. DeepUNet: A deep fully convolutional network for pixel-level sea-land segmentation. IEEE J Sel Top Appl Earth Obs Remote Sens 2018;11:3954-62. https://doi.org/10.1109/JSTARS.2018.2833382.
  • [67] Kamrul Hasan SM, Linte CA. U-NetPlus: A Modified Encoder-Decoder U-Net Architecture for Semantic and Instance Segmentation of Surgical Instruments from Laparoscopic Images. Conf Proc . Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2019;2019:7205. DOI: 10.1109/EMBC.2019.8856791.
  • [68] Sahu A, Das PK, Meher S. High accuracy hybrid CNN classifiers for breast cancer detection using mammogram and ultrasound datasets. Biomed Signal Process Control 2023:80. https://doi.org/10.1016/j.bspc.2022.104292.
  • [69] Ali MU, Kallu KD, Masood H, Tahir U, Gopi CVVM, Zafar A, et al. A CNN-Based Chest Infection Diagnostic Model: A Multistage Multiclass Isolated and Developed Transfer Learning Framework. Int J Intell Syst 2023;2023. DOI: 10.1155/2023/ 6850772.
  • [70] Tang F, Wang L, Ning C, Xian M, Ding J. CMU-NeT: A Strong Convmixer-Based Medical Ultrasound Image Segmentation Network. IEEE Int. Symp. Biomed. Imaging, Institute of Electrical and Electronics Engineers (IEEE); 2022, p. 1-5. DOI: 10.1109/ISBI53787.2023.10230609.
  • [71] He J, Wang J, Han Z, Ma J, Wang C, Qi M. An interpretable transformer network for the retinal disease classification using optical coherence tomography. Sci Rep 2023;13:3637. https://doi.org/10.1038/s41598-023-30853-z.
  • [72] Rajagopal R, Karthick R, Meenalochini P, Kalaichelvi T. Deep convolutional spiking neural network optimized with arithmetic optimization algorithm for lung disease detection using chest X-ray images. Biomed Signal Process Control 2023; 79:104197. https://doi.org/10.1016/j.bspc.2022.104197.
  • [73] Luo S, Pan L, Jian Y, Lu Y, Luo S. CTBANet: Convolution transformers and bidirectional attention for medical image segmentation. Alexandria Eng J 2024;88: 133-43. https://doi.org/10.1016/J.AEJ.2024.01.018.
  • [74] Fu Y, Liu J, Shi J. TSCA-Net: Transformer based spatial-channel attention segmentation network for medical images. Comput Biol Med 2024;170:107938. https://doi.org/10.1016/J.COMPBIOMED.2024.107938.
  • [75] Ma Y, Xu H, Feng Y, Lin Z, Li F, Wu X, et al. MSDEnet: Multi-scale detail enhanced network based on human visual system for medical image segmentation. Comput Biol Med 2024::108010. https://doi.org/10.1016/J.COMPBIOMED.2024.108010.
  • [76] Banerjee S, Lyu J, Huang Z, Leung FHF, Lee T, Yang D, et al. Ultrasound spine image segmentation using multi-scale feature fusion Skip-Inception U-Net (SIU-Net). Biocybern Biomed Eng 2022;42:341-61. https://doi.org/10.1016/J.BBE.2022.02.011.
  • [77] Chen J, Chen W, Zeb A, Zhang D. Segmentation of medical images using an attention embedded lightweight network. Eng Appl Artif Intell 2022;116:105416. https://doi.org/10.1016/J.ENGAPPAI.2022.105416.
  • [78] Chen G, Li L, Dai YY, Zhang JJJJJ, Yap MH, Zhao X, et al. Improving adversarial robustness of medical imaging systems via adding global attention noise. Biomed Signal Process Control 2023;86:1-15. https://doi.org/10.1016/j.jksuci.2023.04.006.
  • [79] Ru J, Lu B, Chen B, Shi J, Chen G, Wang M, et al. Attention guided neural ODE network for breast tumor segmentation in medical images. Comput Biol Med 2023; 159:106884. https://doi.org/10.1016/J.COMPBIOMED.2023.106884.
  • [80] Yeh C-F, Cheng H-T, Wei A, Chen H-M, Kuo P-C, Liu K-C, et al. A Cascaded Learning Strategy for Robust COVID-19 Pneumonia Chest X-Ray Screening. ArXivOrg 2020. DOI: 10.48550/arXiv.2004.12786.
  • [81] Abdulah H, Huber B, Lal S, Abdallah H, Palese LL, Soltanian-Zadeh H, et al. CXR-Net: An Artificial Intelligence Pipeline for Quick Covid-19 Screening of Chest X-Rays. ArXivOrg 2021. DOI: 10.48550/arXiv.2103.00087.
  • [82] Wang G, Liu X, Shen J, Wang C, Li Z, Ye L, et al. A deep-learning pipeline for the diagnosis and discrimination of viral, non-viral and COVID-19 pneumonia from chest X-ray images. Nat Biomed Eng 2021 56 2021;5:509-21. DOI: 10.1038/s41551-021-00704-1.
  • [83] Progga PH, Shatabda S. iResSENet: An Accurate Convolutional Neural Network for Retinal Blood Vessel Segmentation. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2023;13625 LNCS:567-78. DOI: 10.1007/978-3-031-30111-7_48.
  • [84] Karaali A, Dahyot R, Sexton DJ. DR-VNet: Retinal Vessel Segmentation via Dense Residual UNet. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2022;13363 LNCS:198-210. DOI: 10.1007/978-3-031-09037-0_17/TABLES/3.
  • [85] Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2018;11211 LNCS:833-51. DOI: 10.1007/978-3-030-01234-2_49/TABLES/7.
  • [86] Bhatt H, Shah M. A convolutional neural network ensemble model for pneumonia detection using chest X-ray images. Healthc Anal 2023;3:100176. https://doi.org/10.1016/j.health.2023.100176.
  • [87] Zhou Q, Wang Q, Bao Y, Kong L, Jin X, Ou W. LAEDNet: A lightweight attention encoder-decoder network for ultrasound medical image segmentation. Comput Electr Eng 2022;99:107777. https://doi.org/10.1016/J.COMPELECENG.2022.107777.
  • [88] Tsuji T, Hirata Y, Kusunose K, Sata M, Kumagai S, Shiraishi K, et al. Classification of chest X-ray images by incorporation of medical domain knowledge into operation branch networks. BMC Med Imaging 2023:23. https://doi.org/10.1186/s12880-023-01019-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1015f782-b60a-4ebd-a2ca-7bae0c043a15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.