PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compressive Deformation Behavior of Thick Micro-Alloyed HSLA Steel Plates at Elevated Temperatures

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hot deformation behavior of a heavy micro-alloyed high-strength low-alloy (HSLA) steel plate was studied by performing compression tests at elevated temperatures. The hot compression tests were carried out at temperatures from 923 K to 1,223 K with strain rates of 0.002 s-1 and 1.0 s-1. A long plateau region appeared for the 0.002 s-1 strain rate, and this was found to be an effect of the balancing between softening and hardening during deformation. For the 1.0 s-1 strain rate, the flow stress gradually increased after the yield point. The temperature and the strain rate-dependent parameters, such as the strain hardening coefficient (n), strength constant (K), and activation energy (Q), obtained from the flow stress curves were applied to the power law of plastic deformation. The constitutive model for flow stress can be expressed as σ = (39.8 ln (Z) – 716.6) · ε(−0.00955ln(Z) + 0.4930) for the 1.0 s-1 strain rate and σ = (19.9ln (Z) – 592.3) · ε(−0.00212ln(Z) + 0.1540) for the 0.002 s-1 strain rate.
Słowa kluczowe
Twórcy
autor
  • Academy of Convergence Education, INHA University, Incheon, Korea (Republic of)
autor
  • Metallic Materials R&D Center, Korea Automotive Technology Institute, Chungnan, Korea (Republic of)
autor
  • School of Materials Science and Engineering, Chonnam National University, Gwangju 500-757, Korea (Republic of)
Bibliografia
  • [1] Y.N. Kwon, Y.S. Lee, J.H. Lee, J. Mater. Process. Tech. 187-188, 533 (2007).
  • [2] G. Jha, S. Das, S. Sinha, A. Lodh, A. Haldar, Mater. Sci. Eng. A 561, 394 (2013).
  • [3] H.L. Yi, P. Chen, Z.Y. Hou, N. Hong, H.L. Cai, Y.B. Xu, D. Wu and G.D. Wang, Scripta. Mater. 68, 370 (2013).
  • [4] A. Gavrus, E. Massoni, J.L. Chenot, J. Mater. Process. Tech. 60, 447 (1996).
  • [5] Z. Gronostajski, J. Mater. Process. Tech. 106, 40 (2000).
  • [6] K. Wu, G.Q. Liu, B.F. Hu, C.Y. Wang, Y.W. Zhang, Y. Tao, J.T. Liu, Mater. Sci. Eng. A 528, 4620 (2011).
  • [7] T. Sakai, J.J. Jonas, Acta Metall. 32, 189 (1984).
  • [8] H.J. McQueen, Mater. Sci. Eng. A 387-389, 203 (2004).
  • [9] H. Wei, G. Liu, X. Xiao, H. Zhao, H. Ding, R. Kang, Mater. Sci. Eng. A 564, 140 (2013).
  • [10] M. Li, H. Pan, Y. Lin , J. Luo, J. Mater. Process. Tech. 183, 71 (2007).
  • [11] P.A. Friedman, W.B. Copple, J. Mater. Eng. Perform. 13, 335 (2004).
  • [12] S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, K.V. Kasiviswanathan, Mater. Sci. Eng. A 500, 114 (2009).
  • [13] H. Yang, Z. Li, Z. Zhang, J. Zhejiang Univ-SC. A 7, 1453 (2006).
  • [14] H.T. Zhao, G.Q. Liu, L. Xu, Mater. Sci. Eng. A 559, 262 (2013).
  • [15] H.J. McQueen, N.D. Ryan, Mater. Sci. Eng. A 322, 43 (2002).
  • [16] H. Mirzadeh, A. Najafizadeh , M. Moazeney, Metall. Mater. Trans. A 40, 2950 (2009).
  • [17] B. Kowalski, C.M. Sellars, M. Pietrzyk, ISIJ Int. 40, 1230 (2000).
  • [18] W.P. Sun, E.B. Hawbolt, ISIJ Int. 37, 1000 (1997).
  • [19] J.H. Yang, Q.Y. Liu, D.B. Sun, X.Y. Li, J. Iron Steel Res. Int. 16, 75 (2009).
  • [20] C. Zener, J.H. Hollomon, J. Appl. Phys. 15, 22 (1944).
  • [21] Z. Marciniak, A. Konieczny, J. Mech. Work. Technol. 399, 15 (1987).
  • [22] Z.J. Gronostajski, Z. Misiolek, Arch. Metall. 40, 399 (1995).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1015cd6f-1bcc-4753-9131-aa575bd7248d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.