PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving the efficacy of automated fetal state assessment with fuzzy analysis of delivery outcome

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A number of methods of the qualitative assessment of fetal heart rate (FHR) signals are based on supervised learning. The classification methods based on the supervised learning require a set of training recordings accompanied by the reference interpretation. In the real data collections the class of signals related to fetal distress is usually under-represented. Too small percentage of distress patterns adversely affects the effectiveness of the automated evaluation of the fetal state. The paper presents a method of equalizing the class sizes based on the reference assessment of the fetal state with the fuzzy analysis of the newborn attributes. The supervised learning with increased number of the FHR signals, which are characterized by the highest rate of the fuzzy inference leads to significant increase of the efficacy of the qualitative assessment of the fetal state using the Lagrangian support vector machine.
Rocznik
Tom
Strony
223--230
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
autor
  • Silesian University of Technology, Institute of Electronics, Akademicka Str. 16, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Electronics, Akademicka Str. 16, 44-100 Gliwice, Poland
autor
  • Institute of Medical Technology and Equipment ITAM, Roosevelt Str. 118, 41-800 Zabrze, Poland
autor
  • Institute of Medical Technology and Equipment ITAM, Roosevelt Str. 118, 41-800 Zabrze, Poland
autor
  • Silesian University of Technology, Institute of Electronics, Akademicka Str. 16, 44-100 Gliwice, Poland
Bibliografia
  • [1] ALAMEDINE D., KHALIL M., MARQUE C. Comparison of different EHG feature selection methods for the detection of preterm labor. Computational and Mathematical Methods in Medicine, 2013, Vol. 2013. pp. 1–9.
  • [2] CATLEY C., FRIZE M., WALKER C., PETRIU D. Predicting high-risk preterm birth using artificial neural networks. IEEE Trans. Information Technology in Biomedicine, 2006, Vol. 10. pp. 540–549.
  • [3] CHUDACEK V., SPILKA J., JANKU P., KOUCKY M., LHOTSKA L., HUPTYCH M. Automatic evaluation of intrapartum fetal heart rate recordings: a comprehensive analysis of useful features. Physiol. Meas., 2011, Vol. 32. pp. 1347–1360.
  • [4] CZABANSKI R., JEZEWSKI J., HOROBA K., JEZEWSKI M. Fetal state assessment using fuzzy analysis of the fetal heart rate signals – agreement with the neonatal outcome. Biocybern. Biomed. Eng., 2013, Vol. 33. pp. 145–155.
  • [5] CZABANSKI R., JEZEWSKI J., MATONIA A., JEZEWSKI M. Computerized analysis of fetal heart rate signals as the predictor of neonatal acidemia. Expert Systems with Applications, 2012, Vol. 39. pp. 11846–11860.
  • [6] CZABANSKI R., JEZEWSKI M., WROBEL J., HOROBA K., JEZEWSKI J. Neuro-fuzzy approach to the classification of fetal cardiotocograms. IFMBE Proc. 14th Nordic Baltic Conference on Biomedical Engineering and Medical Physics, Riga, 2008. pp. 446–449.
  • [7] CZABANSKI R., JEZEWSKI M., WROBEL J., JEZEWSKI J., HOROBA K. Predicting the risk of low-fetal birth weight from cardiotocographic signals using ANBLIR system with deterministic annealing and ε-insensitive learning. IEEE Trans. on Information Technology in Biomedicine, 2010, Vol. 14. pp. 1062–1074.
  • [8] CZABANSKI R., WROBEL J., JEZEWSKI J. Fetal state evaluation with fuzzy analysis of newborn attributes using CUDA architecture. Journal of Medical Informatics and Technologies, 2013, Vol. 12. pp. 125–133.
  • [9] ESFANDIARI N., BABAVALIAN M., MOGHADAM A.-M., TABAR V. Knowledge discovery in medicine: Current issue and future trend. Expert Systems with Applications, 2014, Vol. 41. pp. 4434–4463.
  • [10] GEORGOULAS G., STYLIOS C., GROUMPOS P. Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines. IEEE Trans. on Biomedical Engineering, 2006, Vol. 53. pp. 875–884.
  • [11] GEORGOULAS G., STYLIOS C., GRUMPOS P. Investigation and comparison of different scale dependent features for fetal heart rate classification. Proceedings of the 16th International Federation of Automatic Control World Congress, Prague, Czech Republic, (CD-ROM), 2005.
  • [12] INBARANI H., NIZAR BANU P., AZAR A. Feature selection using swarm-based relative reduct technique for fetal heart rate. Neural Computing and Applications, 2014, Vol. 25. pp. 793–806.
  • [13] JADHAV S., NALBALWAR S., GHATOL S. Modular neural network model based foetal state classification. Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine Workshops, Atlanta, United States, 2011.
  • [14] JEZEWSKI J., WROBEL J., HOROBA K., GACEK A., SIKORA J. Fetal heart rate variability: clinical experts versus computerized system interpretation. Proc. 24th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Huston, 2002. pp. 1617–1618.
  • [15] JEZEWSKI J., WROBEL J., HOROBA K., GRACZYK S., GACEK A., SIKORA J. Computerized perinatal database for retrospective qualitative assessment of cardiotocographic traces. Proc. Healthcare Computing Conference HC96, BJHC Ltd, Great Britain, 1996. pp. 187–196.
  • [16] JEZEWSKI M., CZABANSKI R., WROBEL J., HOROBA K. Analysis of extracted cardiotocographic signal features to improve automated prediction of fetal outcome. Biocybernetics and Biomedical Engineering, 2010, Vol. 30. pp. 39–47.
  • [17] JEZEWSKI M., WROBEL J., LABAJ P., LESKI J., HENZEL N., HOROBA K., JEZEWSKI J. Some practical remarks on neural networks approach to fetal cardiotocograms classification. Proc. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, 2007. pp. 5170–5173.
  • [18] MANGASARIAN O., MUSICANT D. Lagrangian support vector machines. Journal of Machine Learning Research, 2001, Vol. 1. pp. 161–177.
  • [19] MENAI M., MOHDER F., AL-MUTAIRI F. Influence of feature selection on naive bayes classifier for recognizing patterns in cardiotocograms. Journal of Medical and Bioengineering, 2013, Vol. 2. pp. 66–70.
  • [20] ROOTH G. Guidelines for the use of fetal monitoring. Int. J. Gynecol. Obstet., 1987, Vol. 25. pp. 159–167.
  • [21] SAHIN H., SUBASI A. Classification of the cardiotocogram data for anticipation of fetal risks using machine learning techniques. Applied Soft Computing, 2015, Vol. 33. pp. 231–238.
  • [22] SPILKA J., CHYDACEK V., KOUCKY M., LHOTSKA L., HUPTYCH M., JANKU P., GEORGOULAS G., STYLIOS C. Using nonlinear features for fetal heart rate classification. Biomedical Signal Processing and Control, 2012, Vol. 7. pp. 350–357.
  • [23] TOMAS P., KROHOVA J., DOHNALEK P., GAJDOS P. Classification of cardiotocography records by random forest. 36th International Conference on Telecommunications and Signal Processing (TSP), 2013. pp. 620–923.
  • [24] WARRICK P., HAMILTON E., PRECUP D., KEARNEY R. Classification of normal and hypoxic fetuses from systems modeling of intrapartum cardiotocography. IEEE Transactions on Biomedical Engineering, 2010, Vol. 57. pp. 771–779.
  • [25] WROBEL J., HOROBA K., PANDER T., JEZEWSKI J., CZABANSKI R. Improving the fetal heart rate signal interpretation by application of myriad filtering. Biocybernetics and Biomedical Engineering, 2013, Vol. 33. pp. 211– 221.
  • [26] YILMAZ E., KILIKCIER C. Determination of fetal state from cardiotocogram using LS-SVM with particle swarm optimization and binary decision tree. Computational and Mathematical Methods in Medicine, 2013, Vol. 2013. pp. 1–8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-100c3a48-1014-4fe8-ac97-085a1d77a6a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.