PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vision-based assessment of viability of acorns using sections of their cotyledons during automated scarification procedure

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of the research described in the article was to develop the device for the automatic scarification of acorns and computer vision-based assessment of their viability. The color image of the intersection of the tissue of cotyledons was selected as a key feature for separating healthy seeds from the spoiled ones. Because the device is being designed for the diagnosis of high volume of seeds aiming at producing high-quality seedlings, several assessment criteria of the overall design of the automaton are being assessed. The basic one is the overall accuracy of viability recognition. The other refers to particular functions implemented in the model of the device being described.
Rocznik
Strony
art. no. 20180006
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
  • Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Kraków, Poland
autor
  • Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Kraków, Poland
autor
  • Faculty of Forestry, University of Agriculture in Kraków, Kraków, Poland
autor
  • Faculty of Forestry, University of Agriculture in Kraków, Kraków, Poland
  • Industrial Institute of Agricultural Engineering (PIMR), Poznań, Poland
autor
  • Industrial Institute of Agricultural Engineering (PIMR), Poznań, Poland
autor
  • Industrial Institute of Agricultural Engineering (PIMR), Poznań, Poland
  • Faculty of Production and Power Engineering, University of Agriculture in Kraków, Kraków, Poland
autor
  • Faculty of Production and Power Engineering, University of Agriculture in Kraków, Kraków, Poland
Bibliografia
  • [1] Grabska-Chrząstowska J, Kwiecień J, Drożdż M, Bubliński Z, Tadeusiewicz R, Szczepaniak J, et al. Comparison of selected classification methods in automated oak seed sorting. J Res Appl Agric Eng 2017; 62:31-3.
  • [2] ElMasry GM, Nakauchi S. Image analysis operations applied to hyperspectral images for non-invasive sensing of food quality - a comprehensive review. Biosyst Eng 2016; 142:53-82.
  • [3] Jabłoński M, Tylek P, Walczyk J, Tadeusiewicz R, Piłat A. Colour-based binary discrimination of scarified Quercus robur acorns under varying illumination. Sensors 2016; 16:1-13.
  • [4] Momin MA, Yamamoto K, Miyamoto M, Kondo N, Grift T. Machine vision based soybean quality evaluation. Comput Electro Agric 2017; 140:452-60.
  • [5] Jabłoński M, Tadeusiewicz R. Second International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP), IEEE, Kraków, 2016:1-3.
  • [6] Przybyło J, Jabłoński M, Pociecha D, Tadeusiewicz R, Piłat A, Walczyk J, et al. Application of model-based design in prototyping of algorithms for experimental acorn scarification rig. J Res Appl Agric Eng 2017; 62:166-70.
  • [7] Tadeusiewicz R, Tylek P, Adamczyk F, Kiełbasa P, Jabłoński M, Bubliński Z, et al. Assessment of selected parameters of the automatic scarification device as an example of a device for sustainable forest management. Sustainability 2017; 9:1-17.
  • [8] Tadeusiewicz R, Tylek P, Adamczyk F, Kiełbasa P, Jabłoński M, Pawlik P, et al. Automation of the acorn scarification process as contribution to sustainable forest management: case study: common oak. Sustainability 2017; 9:1-17.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-10064c40-8a5d-46c6-b5ae-28413ff52007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.