PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of EDDS and ZnO-nanoparticles in wheat exposed to TiO2Ag-nanoparticles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanotechnology is a manipulation of nature that has emerged through the use of basic sciences, material science and engineering at the nano-scale. The interaction between biological environment and nanoparticles -nanoparticles or nanoparticles-organic materials is not yet well-understood. The toxic effects of nanoparticles on plants were investigated and it was proved that they caused morphological and physiological changes in plants. This study aimed to determine the effects of TiO2Ag nanoparticles alone, co-application of ZnO nanoparticles -TiO2Ag nanoparticles, and co-application of EDDS-TiO2Ag nanoparticles on seed germination, seedling vigor, radicle and plumule elongation of two different wheat species. In the experimental stage, ten seeds were placed in petri-dishes with a double layer of fi lter paper which was used as an inert material. Then 5 mL of TiO2Ag, ZnO+TiO2Ag, and EDDS+TiO2Ag suspensions were added to every petri dish. Results showed that the maximum SVI was determined at the concentration of 50 mg·L-1 TiO2Ag±EDDS for bread wheat and the minimum SVI was observed at 100 mg·L-1 TiO2Ag nanoparticles concentration for durum wheat. The effect of both nanoparticles -nanoparticles interaction and the other chemicals-nanoparticles interaction on the ecosystems should be evaluated.
Rocznik
Strony
78--83
Opis fizyczny
Bibliogr. 30 poz., wykr.
Twórcy
  • Mersin University, Environmental Engineering Department, 33343, Mersin, Turkey
Bibliografia
  • 1. Afrakhteh, S., Frahmandfar, E., Hamidi, A. & Ramandi, H.D. (2013). Evaluation of growth characteristics and seedling vigor in two cultivars of soybean dried under different temperatures and fluidized bed dryer, International Journal of Agriculture and Crop Sciences, 5, pp. 2537-2544.
  • 2. Bae, J., Benoit, D.L. & Watson, A.K. (2016). Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes, Environmental Pollution, 213, pp. 112-118, DOI: 10.1016/j.envpol.2015.11.041.
  • 3. Baker, S., Volova, T., Prudnikova, S.V., Satish, S. & Prasad, N.M.N. (2017). Nanoagroparticles emerging trends and future prospect in modern agriculture system, Environmental Toxicology and Pharmacology, 53, pp. 10-17, DOI: 10.1016/j. etap.2017.04.012.
  • 4. Bech, J., Abreu, M.M., Chon, H.T. & Roca, N. (2014). Potentially harmful elements in the environment and the impact on human health, in: PHEs, Environment and Human Health, Bini, C. & Bech, J. (Eds.). Springer, p. 288.
  • 5. Bobik, M., Korus, I. & Dudek, L. (2017). The effect of magnetite nanoparticles synthesis conditions on their ability to separate heavy metal ions, Archives of Environmental Protection, 43, 2, pp. 3-9, DOI: 10.1515/aep-2017-0017.
  • 6. Cambier, S., Rogeberg, M., Georgantzopoulou, A., Serchi, T., Karlsson, C., et al. (2018). Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate, Science of the Total Environment, 610-611, pp. 972-982, DOI: 10.1016/j.scitotenv.2017.08.115.
  • 7. Cox, A., Venkatachalam, P., Sahi, S. & Sharma, N. (2017). Reprint of: silver and titanium dioxide nanoparticle toxicity in plants: A review of current research, Plant Physiology and Biochemistry, 110, pp. 33-49, DOI: 10.1016/j.plaphy.2016.08.007.
  • 8. Doğaroğlu, Z.G. & Köleli, N. (2016). Effect of titanium dioxide and titanium dioxide-silver nanoparticles on seed germination of lettuce (Lactuca sativa), Qukurova University Journal of The Faculty of Engineering and Architecture, 31, SI 2, p. 193.
  • 9. Doğaroğlu, Z.G. & Köleli, N. (2017). TiO2 and ZnO nanoparticles toxicity in barley (Hordeum vulgare L.), Clean - Soil, Air, Water, 45, 1700096, DOI: 10.1002/clen.201700096.
  • 10. Du, W., Tan, W., Peralta-Videa, J.R., Gardea-Torresdey, J.L., Ji, R., Yin, Y & Guo, H. (2017). Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects, Plant Physiology and Biochemistry, 110, pp. 210-225, DOI: 10.1016/j.plaphy.2016.04.024.
  • 11. Faraji, J. & Sepehri, A. (2018). Titanium dioxide nanoparticles and sodium nitroprusside alleviate the adverse effects of cadmium stress on germination and seedling growth of wheat (Triticum aestivum L.), Universitas Scientiarum, 23, pp. 61-87, DOI: 10.11144/Javeriana.SC23-1.tdna.
  • 12. Ito, D., Jespersen, M.L. & Hutchison, J.E. (2008). Selective growth of vertical ZnO nanowire arrays using chemically anchored gold nanoparticles, ACS Nano, 2, pp. 2001-2006, DOI: 10.1021/nn800438m.
  • 13. Jaouani, K., Karmous, I., Ostrowski, M., El Ferjani, E., Jakubowska, A. & Chaoui, A. (2018). Cadmium effects on embryo growth of pea seeds during germination: Investigation of the mechanisms of interference of the heavy metal with protein mobilization- related factors, Journal of Plant Physiology, 226, pp. 64-76, DOI: 10.1016/j.jplph.2018.02.009.
  • 14. Josko, I., Oleszczuk, P. & Skwarek, E. (2017). Toxicity of combined mixtures of nanoparticles to plants, Journal of Hazardous Materials, 331, pp. 200-209, DOI: 10.1016/j. jhazmat.2017.02.028.
  • 15. Krzyżewska, I., Kyzioł-Komosińska, J., Rosik-Dulewska, C., Czupioł, J. & Antoszczyszyn-Szpicka, P. (2016). Inorganic nanomaterials in the aquatic environment: behavior, toxicity, and interaction with environmental elements, Archives of Environmental Protection, 42, 1, pp. 87-101, DOI: 10.1515/aep-2016-0011.
  • 16. Mahmoodzadeh, H., Nabavi, M. & Kashefi, H. (2013). Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus), Journal of Ornamental and Horticultural Plants, 3, pp. 25-32.
  • 17. Manesh, R.R., Grassia, G., Bergami, E., Marques-Santos, L.F., Faleri, C., Liberatori, G. & Corsi, I. (2018). Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus), Ecotoxicology and Environmental Safely, 148, pp. 359-366, DOI: 10.1016/j.ecoenv.2017.10.051.
  • 18. Narendhran, S., Rajiv, P. & Sivaraj, R. (2016). Influence of zinc oxide nanoparticles on growth of Sesamum indicum L. in zinc deficient soil, International Journal of Pharmacy and Pharmaceutical Sciences, 8, p. 365.
  • 19. Pinto, I.S.S., Neto, I.F.F. & Soares, H.M.VM. (2014). Biodegradable chelating agents for industrial, domestic, and agricultural applications - a review, Environmental Science and Pollution Research, 21, pp. 11893-11906, DOI: 10.1007/s11356-014-2592-6.
  • 20. Prasad, T.N.V.K.V, Sudhakar, P., Sreenivasulu, Y, Latha, P., Munaswamy, V., et al. (2012). Effect of nanoscale zinc oxide particles on the germination, growth, and yield of peanut, Journal of Plant Nutrituon, 35, pp. 905-927, DOI: 10.1080/01904167.2012.663443.
  • 21. Priac, A., Badot, P.M. & Crini, G. (2017). Treated wastewater phytotoxicity assessment using Lactuca sativa: Focus on germination and root elongation test parameters, Comptes Rendus Biologies, 340, pp. 188-194, DOI: 10.1016/j.crvi.2017.01.002.
  • 22. Savithramma, N., Ankanna, S. & Bhumi, G. (2012). Effect of nanoparticles on seed germination and seedling growth of boswellia ovalifoliolata - an endemic and endangered medicinal tree taxon, Nano Vision, 2, pp. 61-68.
  • 23. Servin, A.D. & White, J.C. (2016). Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk, Nano Impact, 1, pp. 9-12, DOI: 10.1016/j. impact.2015.12.002.
  • 24. Shah, F.U.R., Ahmad, N., Masood, K.R., Peralta-Videa, J.R. & Ahmad, F.D. (2010). Heavy metal toxicity in plants, in: Plant Adaptation and Phytoremediation, Ashraf, M., Ozturk, M. & Ahmad, M.S.A. (Eds.), Springer, London, pp. 71-97.
  • 25. Shalaby, T.A., Bayoumi, Y., Abdalla, N., Taha, H., Alshaal, T. et al. (2016). Nanoparticles, soils, plants and sustainable agriculture, Nanoscience in Food and Agriculture, 1, 20, pp. 283-312.
  • 26. Siddiqi, K.S. & Husen, A. (2017). Plant response to engineered metal oxide nanoparticles, Nanoscale Research Letters, 12, 1, DOI: 10.1186/s11671-017-1861-y.
  • 27. Sidhu, G.P.S., Singh, H.P., Batish, D.R. & Kohli, R.K. (2017). Appraising the role of environment friendly chelants in alleviating lead by Coronopus didymus from Pb-contaminated soils, Chemosphere, 182, pp. 129-136, DOI: 10.1016/j.chemosphere.2017.05.026.
  • 28. Tarafdar, J.C., Sharma, S. & Raliya, R. (2013). Nanotechnology: interdisciplinary science of applications, African Journal of Biotechnology, 12, 3, pp. 219-226, DOI: 10.5897/AJB12.2481.
  • 29. Tareq, F.K., Fayzunnesa, M. & Kabir, M.S. (2017). Antimicrobial activity of plant-median synthesized silver nanoparticles against food and agricultural pathogens, Microbial Pathogenesis, 109, pp. 228-232, DOI: 10.1016/j.micpath.2017.06.002.
  • 30. Zapor, L. (2016). Effects of silver nanoparticles of different sizes on cytotoxicity and oxygen metabolism disorders in both reproductive and respiratory system cells, Archives of Environmental Protection, 42, 4, pp. 32-47, DOI: 10.1515/aep-2016-0038.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1000ee42-bca7-4cee-a17e-1619d3a9a516
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.